Skip to main content
Log in

On the Higgs fit and electroweak phase transition

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the Higgs portal through which light scalars contribute both to the Higgs production and decay and Higgs effective potential at finite temperature via quantum loops. The positive Higgs portal coupling required by a strongly first order electroweak phase transition is disfavored by the current Higgs data if we consider one such scalar. We observe that by introducing a second scalar with negative Higgs portal coupling, one can not only improve the Higgs fits, but also enhance the strength of first order EWPT. We apply this mechanism to the light stop scenario for electroweak baryogenesis in the MSSM and find a light sbottom could play the role as the second scalar, which allows the stop to be relatively heavier. Non-decoupled effects on the Higgs or sbottom self-interactions from physics beyond MSSM are found to be indispensable for this scenario to work. A clear prediction from the picture is the existence of a light sbottom (below 200 GeV) and a light stop (can be as heavy as 140 GeV), which can be directly tested in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs portal with 10 fb −1 at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].

    Article  ADS  Google Scholar 

  4. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  7. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    Article  ADS  Google Scholar 

  8. I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].

    ADS  Google Scholar 

  9. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    ADS  Google Scholar 

  10. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].

    ADS  Google Scholar 

  11. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    Article  ADS  Google Scholar 

  12. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  13. T. Plehn and M. Rauch, Higgs couplings after the discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].

    Article  Google Scholar 

  14. V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    ADS  Google Scholar 

  15. M.S. Carena, A. Megevand, M. Quirós and C.E. Wagner, Electroweak baryogenesis and new TeV fermions, Nucl. Phys. B 716 (2005) 319 [hep-ph/0410352] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M.S. Carena, M. Quirós and C. Wagner, Opening the window for electroweak baryogenesis, Phys. Lett. B 380 (1996) 81 [hep-ph/9603420] [INSPIRE].

    ADS  Google Scholar 

  17. D.J. Chung, A.J. Long and L.-T. Wang, The 125 GeV Higgs and electroweak phase transition model classes, Phys. Rev. D 87 (2013) 023509 [arXiv:1209.1819] [INSPIRE].

    ADS  Google Scholar 

  18. A.G. Cohen and M. Schmaltz, New charged particles from Higgs couplings, arXiv:1207.3495 [INSPIRE].

  19. M. Carena, G. Nardini, M. Quirós and C. Wagner, The baryogenesis window in the MSSM, Nucl. Phys. B 812 (2009) 243 [arXiv:0809.3760] [INSPIRE].

    Article  ADS  Google Scholar 

  20. T. Cohen, D.E. Morrissey and A. Pierce, Electroweak baryogenesis and Higgs signatures, Phys. Rev. D 86 (2012) 013009 [arXiv:1203.2924] [INSPIRE].

    ADS  Google Scholar 

  21. D. Curtin, P. Jaiswal and P. Meade, Excluding electroweak baryogenesis in the MSSM, JHEP 08 (2012) 005 [arXiv:1203.2932] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs low-energy theorem (and its corrections) in composite models, JHEP 10 (2012) 004 [arXiv:1206.7120] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Quirós, Finite temperature field theory and phase transitions, hep-ph/9901312 [INSPIRE].

  25. T.A. Chowdhury, M. Nemevšek, G. Senjanović and Y. Zhang, Dark matter as the trigger of strong electroweak phase transition, JCAP 02 (2012) 029 [arXiv:1110.5334] [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Cohen and A. Pierce, Electroweak baryogenesis and colored scalars, Phys. Rev. D 85 (2012) 033006 [arXiv:1110.0482] [INSPIRE].

    ADS  Google Scholar 

  27. H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].

    Article  ADS  Google Scholar 

  28. C. Wainwright, S. Profumo and M.J. Ramsey-Musolf, Gravity waves from a cosmological phase transition: gauge artifacts and daisy resummations, Phys. Rev. D 84 (2011) 023521 [arXiv:1104.5487] [INSPIRE].

    ADS  Google Scholar 

  29. C.L. Wainwright, S. Profumo and M.J. Ramsey-Musolf, Phase transitions and gauge artifacts in an Abelian Higgs plus singlet model, Phys. Rev. D 86 (2012) 083537 [arXiv:1204.5464] [INSPIRE].

    ADS  Google Scholar 

  30. J.M. Cline and P.-A. Lemieux, Electroweak phase transition in two Higgs doublet models, Phys. Rev. D 55 (1997) 3873 [hep-ph/9609240] [INSPIRE].

    ADS  Google Scholar 

  31. D.J. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Yukawa interactions and supersymmetric electroweak baryogenesis, Phys. Rev. Lett. 102 (2009) 061301 [arXiv:0808.1144] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Reece, Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude, arXiv:1208.1765 [INSPIRE].

  34. T. Kitahara, Vacuum stability constraints on the enhancement of the hγγ rate in the MSSM, JHEP 11 (2012) 021 [arXiv:1208.4792] [INSPIRE].

    Article  ADS  Google Scholar 

  35. K. Babu and C. Macesanu, Two loop neutrino mass generation and its experimental consequences, Phys. Rev. D 67 (2003) 073010 [hep-ph/0212058] [INSPIRE].

    ADS  Google Scholar 

  36. R. Sato, K. Tobioka and N. Yokozaki, Enhanced diphoton signal of the Higgs boson and the muon g-2 in gauge mediation models, Phys. Lett. B 716 (2012) 441 [arXiv:1208.2630] [INSPIRE].

    ADS  Google Scholar 

  37. J. Espinosa, M. Quirós and F. Zwirner, On the electroweak phase transition in the minimal supersymmetric Standard Model, Phys. Lett. B 307 (1993) 106 [hep-ph/9303317] [INSPIRE].

    ADS  Google Scholar 

  38. A. Delgado, G. Nardini and M. Quirós, The light stop scenario from gauge mediation, JHEP 04 (2012) 137 [arXiv:1201.5164] [INSPIRE].

    Article  ADS  Google Scholar 

  39. P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric Standard Model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. Y. Zhang, H. An, X.-D. Ji and R.N. Mohapatra, Light Higgs mass bound in SUSY left-right models, Phys. Rev. D 78 (2008) 011302 [arXiv:0804.0268] [INSPIRE].

    ADS  Google Scholar 

  42. M. Endo, K. Hamaguchi, S. Iwamoto, K. Nakayama and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM, Phys. Rev. D 85 (2012) 095006 [arXiv:1112.6412] [INSPIRE].

    ADS  Google Scholar 

  43. C. Cheung and H.L. Roberts, Higgs mass from D-terms: a litmus test, arXiv:1207.0234 [INSPIRE].

  44. H. An, T. Liu and L.-T. Wang, 125 GeV Higgs boson, enhanced di-photon rate and gauged U(1)PQ -extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].

    ADS  Google Scholar 

  45. K. Babu, X.-G. He and E. Ma, New supersymmetric left-right gauge model: Higgs boson structure and neutral current analysis, Phys. Rev. D 36 (1987) 878 [INSPIRE].

    ADS  Google Scholar 

  46. ATLAS collaboration, Search for light top squark pair production in final states with leptons and b jets with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, arXiv:1209.2102 [INSPIRE].

  47. M. White, Searches for third generation squarks with the ATLAS detector, presented at ICHEP2012, Melbourne Australia (2012).

  48. ATLAS collaboration, Search for scalar bottom pair production with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108 (2012) 181802 [arXiv:1112.3832] [INSPIRE].

    Article  ADS  Google Scholar 

  49. CDF collaboration, T. Aaltonen et al., A search for dark matter in events with one jet and missing transverse energy in p \( \overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 108 (2012) 211804 [arXiv:1203.0742] [INSPIRE].

    Article  ADS  Google Scholar 

  50. CMS collaboration, Search for dark matter and large extra dimensions in monojet events in p \( \overline{p} \) collisions at \( \sqrt{s}=7 \) TeV, JHEP 09 (2012) 094 [arXiv:1206.5663] [INSPIRE].

    ADS  Google Scholar 

  51. E. Alvarez and Y. Bai, Reach the bottom line of the sbottom search, JHEP 08 (2012) 003 [arXiv:1204.5182] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Fairbairn et al., Stable massive particles at colliders, Phys. Rept. 438 (2007) 1 [hep-ph/0611040] [INSPIRE].

    Article  ADS  Google Scholar 

  53. CMS collaboration, Search for stopped long-lived particles produced in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 08 (2012) 026 [arXiv:1207.0106] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Shu.

Additional information

ArXiv ePrint: 1210.0906

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Shu, J. & Zhang, Y. On the Higgs fit and electroweak phase transition. J. High Energ. Phys. 2013, 164 (2013). https://doi.org/10.1007/JHEP03(2013)164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)164

Keywords

Navigation