Skip to main content
Log in

Renormalization of the cyclic Wilson loop

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In finite-temperature field theory, the cyclic Wilson loop is defined as a rectangular Wilson loop spanning the whole compactified time direction. In a generic non-abelian gauge theory, we calculate the perturbative expansion of the cyclic Wilson loop up to order g 4. At this order and after charge renormalization, the cyclic Wilson loop is known to be ultraviolet divergent. We show that the divergence is not associated with cusps in the contour but is instead due to the contour intersecting itself because of the periodic boundary conditions. One consequence of this is that the cyclic Wilson loop mixes under renormalization with the correlator of two Polyakov loops. The resulting renormalization equation is tested up to order g 6 and used to resum the leading logarithms associated with the intersection divergence. Implications for lattice studies of this operator, which may be relevant for the phenomenology of quarkonium at finite temperature, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].

    ADS  Google Scholar 

  2. L. Susskind, Coarse Grained Quantum Chromodynamics, in Les Houches 1976, Proceedings, Weak and Electromagnetic Interactions At High Energies, Amsterdam, (1977), pg. 207.

  3. L.S. Brown and W.I. Weisberger, Remarks On The Static Potential In Quantum Chromodynamics, Phys. Rev. D 20 (1979) 3239 [INSPIRE].

    ADS  Google Scholar 

  4. Quarkonium Working Group collaboration, N. Brambilla et al., Heavy quarkonium physics, CERN-2005-005 [hep-ph/0412158] [INSPIRE].

  5. N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].

    Article  ADS  Google Scholar 

  6. N. Brambilla et al., Heavy quarkonium: progress, puzzles and opportunities, Eur. Phys. J. C 71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].

    ADS  Google Scholar 

  7. T. Matsui and H. Satz, J/ψ Suppression by quark-gluon Plasma Formation, Phys. Lett. B 178 (1986) 416 [INSPIRE].

    ADS  Google Scholar 

  8. A. Bazavov, P. Petreczky and A. Velytsky, Quarkonium at Finite Temperature, arXiv:0904.1748 [INSPIRE].

  9. Y. Burnier, M. Laine and M. Vepsäläinen, Dimensionally regularized Polyakov loop correlators in hot QCD, JHEP 01 (2010) 054 [Erratum ibid. 1301 (2013) 180] [arXiv:0911.3480] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. V. Dotsenko and S. Vergeles, Renormalizability of Phase Factors in the Nonabelian Gauge Theory, Nucl. Phys. B 169 (1980) 527 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Korchemsky and A. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    Article  ADS  Google Scholar 

  13. D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].

    Article  ADS  Google Scholar 

  14. R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].

    ADS  Google Scholar 

  15. M. Berwein, Renormalization of the Cyclic Wilson Loop, Master’s thesis, TU Munich, Germany (2011).

  16. R.A. Brandt, A. Gocksch, M. Sato and F. Neri, Loop Space, Phys. Rev. D 26 (1982) 3611 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. J. Gatheral, Exponentiation Of Eikonal Cross-Sections In Nonabelian Gauge Theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. J. Frenkel and J. Taylor, Nonabelian Eikonal Exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].

    Article  ADS  Google Scholar 

  19. L.D. McLerran and B. Svetitsky, Quark Liberation at High Temperature: A Monte Carlo Study of SU(2) Gauge Theory, Phys. Rev. D 24 (1981) 450 [INSPIRE].

    ADS  Google Scholar 

  20. N. Brambilla, J. Ghiglieri, P. Petreczky and A. Vairo, The Polyakov loop and correlator of Polyakov loops at next-to-next-to-leading order, Phys. Rev. D 82 (2010) 074019 [arXiv:1007.5172] [INSPIRE].

    ADS  Google Scholar 

  21. U.W. Heinz, K. Kajantie and T. Toimela, Gauge Covariant Linear Response Analysis of QCD Plasma Oscillations, Annals Phys. 176 (1987) 218 [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.I. Kapusta and C. Gale, Finite-temperature field theory: Principles and applications, Cambridge University Press, Cambridge U.S.A. (2006).

    Book  MATH  Google Scholar 

  23. N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [INSPIRE].

    ADS  Google Scholar 

  24. A. Andrasi, The Gluon propagator in the Coulomb gauge, Eur. Phys. J. C 37 (2004) 307 [hep-th/0311118] [INSPIRE].

    Article  ADS  Google Scholar 

  25. W. Fischler, Quark - anti-Quark Potential in QCD, Nucl. Phys. B 129 (1977) 157 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Billoire, How Heavy Must Be Quarks in Order to Build Coulombic q q Bound States, Phys. Lett. B 92 (1980) 343 [INSPIRE].

    ADS  Google Scholar 

  27. D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod. Phys. 53 (1981) 43 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Nadkarni, Nonabelian Debye Screening. 1. The Color Averaged Potential, Phys. Rev. D 33 (1986) 3738 [INSPIRE].

    ADS  Google Scholar 

  29. I. Korchemskaya and G. Korchemsky, High-energy scattering in QCD and cross singularities of Wilson loops, Nucl. Phys. B 437 (1995) 127 [hep-ph/9409446] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Ghiglieri.

Additional information

ArXiv ePrint: 1212.4413

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berwein, M., Brambilla, N., Ghiglieri, J. et al. Renormalization of the cyclic Wilson loop. J. High Energ. Phys. 2013, 69 (2013). https://doi.org/10.1007/JHEP03(2013)069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)069

Keywords

Navigation