Skip to main content
Log in

Dimensionally regularized Polyakov loop correlators in hot QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A popular observable in finite-temperature lattice QCD is the so-called singlet quark-antiquark free energy, conventionally defined in Coulomb gauge. In an effort to interpret the existing numerical data on this observable, we compute it at order \( \mathcal{O}\left( {\alpha_s^2} \right) \) in continuum, and analyze the result at various distance scales. At short distances (r ≪ 1/πT) the behaviour matches that of the gauge-independent zero-temperature potential; on the other hand at large distances (r ≫ 1/πT) the singlet free energy appears to have a gauge-fixing related power-law tail. At infinite distance the result again becomes physical in the sense that it goes over to a gauge-independent disconnected contribution, the square of the expectation value of the trace of the Polyakov loop; we recompute this quantity at \( \mathcal{O}\left( {\alpha_s^2} \right) \), finding for pure SU(N c ) a different non-logarithmic term than in previous literature, and adding for full QCD the quark contribution. We also discuss the value of the singlet free energy in a general covariant gauge, as well as the behaviour of the cyclic Wilson loop that is obtained if the singlet free energy is made gauge-independent by inserting straight spacelike Wilson lines into the observable. Comparisons with lattice data are carried out where possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Matsui and H. Satz, J/ψ suppression by quark-gluon plasma formation, Phys. Lett. B 178 (1986) 416 [SPIRES].

    ADS  Google Scholar 

  2. M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [SPIRES].

    Article  ADS  Google Scholar 

  3. A. Beraudo, J.P. Blaizot and C. Ratti, Real and imaginary-time \( Q\bar Q \) correlators in a thermal medium, Nucl. Phys. A 806 (2008) 312 [arXiv:0712.4394] [SPIRES].

    ADS  Google Scholar 

  4. M.A. Escobedo and J. Soto, Non-relativistic bound states at finite temperature: the hydrogen atom, Phys. Rev. A 78 (2008) 032520 [arXiv:0804.0691] [SPIRES].

    ADS  Google Scholar 

  5. N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [SPIRES].

    ADS  Google Scholar 

  6. A. Rothkopf, T. Hatsuda and S. Sasaki, Proper heavy-quark potential from a spectral decomposition of the thermal Wilson loop, arXiv:0910.2321 [SPIRES].

  7. O. Kaczmarek, F. Karsch, E. Laermann and M. Lütgemeier, Heavy quark potentials in quenched QCD at high temperature, Phys. Rev. D 62 (2000) 034021 [hep-lat/9908010] [SPIRES].

    ADS  Google Scholar 

  8. O. Kaczmarek, F. Karsch, P. Petreczky and F. Zantow, Heavy quark anti-quark free energy and the renormalized Polyakov loop, Phys. Lett. B 543 (2002) 41 [hep-lat/0207002] [SPIRES].

    ADS  Google Scholar 

  9. P. Petreczky and K. Petrov, Free energy of a static quark anti-quark pair and the renormalized Polyakov loop in three flavor QCD, Phys. Rev. D 70 (2004) 054503 [hep-lat/0405009] [SPIRES].

    ADS  Google Scholar 

  10. O. Kaczmarek and F. Zantow, Static quark anti-quark interactions in zero and finite temperature QCD. I: Heavy quark free energies, running coupling and quarkonium binding, Phys. Rev. D 71 (2005) 114510 [hep-lat/0503017] [SPIRES].

    ADS  Google Scholar 

  11. WHOT-QCD collaboration, Y. Maezawa et al., Heavy-quark free energy, Debye mass and spatial string tension at finite temperature in two flavor lattice QCD with Wilson quark action, Phys. Rev. D 75 (2007) 074501 [hep-lat/0702004] [SPIRES].

    ADS  Google Scholar 

  12. S. Gupta, K. Hübner and O. Kaczmarek, Renormalized Polyakov loops in many representations, Phys. Rev. D 77 (2008) 034503 [arXiv:0711.2251] [SPIRES].

    ADS  Google Scholar 

  13. A. Bazavov, P. Petreczky and A. Velytsky, Static quark anti-quark pair in SU(2) gauge theory, Phys. Rev. D 78 (2008) 114026 [arXiv:0809.2062] [SPIRES].

    ADS  Google Scholar 

  14. F. Zantow, O. Kaczmarek, F. Karsch and P. Petreczky, Short distance physics with heavy quark potentials, Nucl. Phys. (Proc. Suppl.) 106 (2002) 519 [hep-lat/0110103] [SPIRES].

    Article  ADS  Google Scholar 

  15. WHOT-QCD collaboration, Y. Maezawa et al., Free energies of heavy quarks in full-QCD lattice simulations with Wilson-type quark action, Nucl. Phys. A 830 (2009) 247c [arXiv:0907.4203] [SPIRES].

    Google Scholar 

  16. L.D. McLerran and B. Svetitsky, Quark liberation at high temperature: a Monte Carlo study of SU(2) gauge theory, Phys. Rev. D 24 (1981) 450 [SPIRES].

    ADS  Google Scholar 

  17. A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96 (1980) 289 [SPIRES].

    ADS  Google Scholar 

  18. D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. P.H. Ginsparg, First order and second order phase transitions in gauge theories at finite temperature, Nucl. Phys. B 170 (1980) 388 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. T. Appelquist and R.D. Pisarski, High-temperature Yang-Mills theories and three-dimensional Quantum Chromodynamics, Phys. Rev. D 23 (1981) 2305 [SPIRES].

    ADS  Google Scholar 

  21. E. Braaten and A. Nieto, Free energy of QCD at high temperature, Phys. Rev. D 53 (1996) 3421 [hep-ph/9510408] [SPIRES].

    ADS  Google Scholar 

  22. E. Gava and R. Jengo, Perturbative evaluation of the thermal Wilson loop, Phys. Lett. B 105 (1981) 285 [SPIRES].

    ADS  Google Scholar 

  23. M. Laine and Y. Schröder, Two-loop QCD gauge coupling at high temperatures, JHEP 03 (2005) 067 [hep-ph/0503061] [SPIRES].

    Article  ADS  Google Scholar 

  24. E. Braaten and A. Nieto, Asymptotic behavior of the correlator for Polyakov loops, Phys. Rev. Lett. 74 (1995) 3530 [hep-ph/9410218] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. S. Nadkarni, Non-Abelian Debye screening: the color-averaged potential, Phys. Rev. D 33 (1986) 3738 [SPIRES].

    ADS  Google Scholar 

  26. A.K. Rebhan, The non-Abelian Debye mass at next-to-leading order, Phys. Rev. D 48 (1993) R3967 [hep-ph/9308232] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. E. Braaten and A. Nieto, Next-to-leading order Debye mass for the quark-gluon plasma, Phys. Rev. Lett. 73 (1994) 2402 [hep-ph/9408273] [SPIRES].

    Article  ADS  Google Scholar 

  28. A.M. Polyakov, Gauge fields as rings of glue, Nucl. Phys. B 164 (1980) 171 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. V.S. Dotsenko and S.N. Vergeles, Renormalizability of phase factors in the non-Abelian gauge theory, Nucl. Phys. B 169 (1980) 527 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. J.-L. Gervais and A. Neveu, The slope of the leading Regge trajectory in Quantum Chromodynamics, Nucl. Phys. B 163 (1980) 189 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. I.Ya. Arefeva, Quantum contour field equations, Phys. Lett. B 93 (1980) 347 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. N. Brambilla, J. Ghiglieri, P. Petreczky and A. Vairo, The Polyakov loop and correlator of Polyakov loops at next-to-leading order, to appear [TUM-EFT 2/09].

  33. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, 3d SU(N) + adjoint Higgs theory and finite-temperature QCD, Nucl. Phys. B 503 (1997) 357 [hep-ph/9704416] [SPIRES].

    Article  ADS  Google Scholar 

  34. M. Laine and M. Vepsäläinen, On the smallest screening mass in hot QCD, JHEP 09 (2009) 023 [arXiv:0906.4450] [SPIRES].

    Article  Google Scholar 

  35. M. Cheng et al., The spatial string tension and dimensional reduction in QCD, Phys. Rev. D 78 (2008) 034506 [arXiv:0806.3264] [SPIRES].

    ADS  Google Scholar 

  36. J. Alanen, K. Kajantie and V. Suur-Uski, Spatial string tension of finite temperature QCD matter in gauge/gravity duality, Phys. Rev. D 80 (2009) 075017 [arXiv:0905.2032] [SPIRES].

    Google Scholar 

  37. E. Megías, E. Ruiz Arriola and L.L. Salcedo, Dimension two condensates and the Polyakov loop above the deconfinement phase transition, JHEP 01 (2006) 073 [hep-ph/0505215] [SPIRES].

    Article  ADS  Google Scholar 

  38. O. Andreev, Renormalized Polyakov loop in the deconfined phase of SU(N) gauge theory and gauge/string duality, Phys. Rev. Lett. 102 (2009) 212001 [arXiv:0903.4375] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. M. Laine and M. Vepsäläinen, Mesonic correlation lengths in high-temperature QCD, JHEP 02 (2004) 004 [hep-ph/0311268] [SPIRES].

    Article  ADS  Google Scholar 

  40. M. Vepsäläinen, Mesonic screening masses at high temperature and finite density, JHEP 03 (2007) 022 [hep-ph/0701250] [SPIRES].

    Article  ADS  Google Scholar 

  41. S. Nadkarni, Non-Abelian Debye screening. II. The singlet potential, Phys. Rev. D 34 (1986) 3904 [SPIRES].

    ADS  Google Scholar 

  42. O. Jahn and O. Philipsen, The Polyakov loop and its relation to static quark potentials and free energies, Phys. Rev. D 70 (2004) 074504 [hep-lat/0407042] [SPIRES].

    ADS  Google Scholar 

  43. Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quark medium polarization at next-to-leading order, JHEP 02 (2009) 008 [arXiv:0812.2105] [SPIRES].

    Article  ADS  Google Scholar 

  44. W. Fischler, Quark-anti-quark potential in QCD, Nucl. Phys. B 129 (1977) 157 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. Y. Schröder, The static potential in QCD to two loops, Phys. Lett. B 447 (1999) 321 [hep-ph/9812205] [SPIRES].

    ADS  Google Scholar 

  46. P. Arnold and L.G. Yaffe, The non-Abelian Debye screening length beyond leading order, Phys. Rev. D 52 (1995) 7208 [hep-ph/9508280] [SPIRES].

    ADS  Google Scholar 

  47. M. Laine and O. Philipsen, The non-perturbative QCD Debye mass from a Wilson line operator, Phys. Lett. B 459 (1999) 259 [hep-lat/9905004] [SPIRES].

    Article  ADS  Google Scholar 

  48. N. Iqbal and H.B. Meyer, Spatial correlators in strongly coupled plasmas, JHEP 11 (2009) 029 [arXiv:0909.0582] [SPIRES].

    Article  Google Scholar 

  49. S. Aoyama, The renormalization of the string operator in QCD, Nucl. Phys. B 194 (1982) 513 [SPIRES].

    Article  ADS  Google Scholar 

  50. O. Kaczmarek, O. Philipsen and M. Tassler, private communication.

  51. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Heavy quark potential at finite temperature in AdS/CFT revisited, Phys. Rev. D 78 (2008) 115007 [arXiv:0807.4747] [SPIRES].

    ADS  Google Scholar 

  52. Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quarkonium in any channel in resummed hot QCD, JHEP 01 (2008) 043 [arXiv:0711.1743] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Burnier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnier, Y., Laine, M. & Vepsäläinen, M. Dimensionally regularized Polyakov loop correlators in hot QCD. J. High Energ. Phys. 2010, 54 (2010). https://doi.org/10.1007/JHEP01(2010)054

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2010)054

Keywords

Navigation