Skip to main content
Log in

On the horizon instability of an extreme Reissner-Nordström black hole

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Aretakis has proved that a massless scalar field has an instability at the horizon of an extreme Reissner-Nordström black hole. We show that a similar instability occurs also for a massive scalar field and for coupled linearized gravitational and electromagnetic perturbations. We present numerical results for the late time behaviour of massless and massive scalar fields in the extreme RN background and show that instabilities are present for initial perturbations supported outside the horizon, e.g. an ingoing wavepacket. For a massless scalar we show that the numerical results for the late time behaviour are reproduced by an analytic calculation in the near-horizon geometry. We relate Aretakis’ conserved quantities at the future horizon to the Newman-Penrose conserved quantities at future null infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Christodoulou and S. Klainerman, The Global nonlinear stability of the Minkowski space, Princeton University Press, Princeton U.S.A. (1993).

    MATH  Google Scholar 

  2. P. Bizon and A. Rostworowski, On weakly turbulent instability of anti-de Sitter space, Phys. Rev. Lett. 107 (2011) 031102 [arXiv:1104.3702] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Aretakis, Stability and Instability of Extreme Reissner-Nordström Black Hole Spacetimes for Linear Scalar Perturbations I, Commun. Math. Phys. 307 (2011) 17 [arXiv:1110.2007] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. S. Aretakis, Stability and Instability of Extreme Reissner-Nordstrom Black Hole Spacetimes for Linear Scalar Perturbations II, Annales Henri Poincaré 12 (2011) 1491 [arXiv:1110.2009] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. D. Marolf, The dangers of extremes, Gen. Rel. Grav. 42 (2010) 2337 [arXiv:1005.2999] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. G. Gibbons and C. Hull, A Bogomolny Bound for General Relativity and Solitons in N = 2 Supergravity, Phys. Lett. B 109 (1982) 190 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. M. Dafermos and I. Rodnianski, Lectures on black holes and linear waves, arXiv:0811.0354 [INSPIRE].

  8. M. Dafermos and I. Rodnianski, The black hole stability problem for linear scalar perturbations, arXiv:1010.5137 [INSPIRE].

  9. S. Aretakis, Decay of Axisymmetric Solutions of the Wave Equation on Extreme Kerr Backgrounds, J. Funct. Anal. 263 (2012) 2770 [arXiv:1110.2006] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Aretakis, Horizon Instability of Extremal Black Holes, arXiv:1206.6598 [INSPIRE].

  11. J. Lucietti and H.S. Reall, Gravitational instability of an extreme Kerr black hole, Phys. Rev. D 86 (2012) 104030 [arXiv:1208.1437] [INSPIRE].

    ADS  Google Scholar 

  12. K. Murata, Instability of higher dimensional extreme black holes, arXiv:1211.6903 [INSPIRE].

  13. E. Newman and R. Penrose, New conservation laws for zero rest-mass fields in asymptotically flat space-time, Proc. Roy. Soc. Lond. A 305 (1968) 175 [INSPIRE].

    ADS  Google Scholar 

  14. W.E. Couch and R.J. Torrence, Conformal Invariance Under Spatial Inversion of Extreme Reissner-Nordström Black Holes , Gen. Rel. Grav. 16 (1984) 789.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. S. Dain and G. Dotti, The wave equation on the extreme Reissner-Nordström black hole, Class. Quant. Grav. 30 (2013) 055011 [arXiv:1209.0213] [INSPIRE].

    Article  ADS  Google Scholar 

  16. C.J. Blaksley and L.M. Burko, The Late-time tails in the Reissner-Nordstrom spacetime revisited, Phys. Rev. D 76 (2007) 104035 [arXiv:0710.2915] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. J. Bicak, Gravitational collapse with charge and small asymmetries I. Scalar perturbations, Gen. Rel. Grav. 3 (1972) 331.

    Article  ADS  Google Scholar 

  18. R. Gomez, J. Winicour and B.G. Schmidt, Newman-Penrose constants and the tails of selfgravitating waves, Phys. Rev. D 49 (1994) 2828 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. J. Bardeen and W. Press, Radiation fields in the Schwarzschild background, J. Math. Phys. 14 (1973) 7 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. H. Koyama and A. Tomimatsu, Asymptotic power law tails of massive scalar fields in Reissner-Nordstrom background, Phys. Rev. D 63 (2001) 064032 [gr-qc/0012022] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. H. Koyama and A. Tomimatsu, Asymptotic tails of massive scalar fields in Schwarzschild background, Phys. Rev. D 64 (2001) 044014 [gr-qc/0103086] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. H. Koyama and A. Tomimatsu, Slowly decaying tails of massive scalar fields in spherically symmetric space-times, Phys. Rev. D 65 (2002) 084031 [gr-qc/0112075] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. L.M. Burko and G. Khanna, Universality of massive scalar field late time tails in black hole space-times, Phys. Rev. D 70 (2004) 044018 [gr-qc/0403018] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. F.J. Zerilli, Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordström geometry, Phys. Rev. D 9 (1974) 860 [INSPIRE].

    ADS  Google Scholar 

  25. V. Moncrief, Odd-parity stability of a Reissner-Nordstrom black hole, Phys. Rev. D 9 (1974) 2707 [INSPIRE].

    ADS  Google Scholar 

  26. V. Moncrief, Stability of Reissner-Nordstrom black holes, Phys. Rev. D 10 (1974) 1057 [INSPIRE].

    ADS  Google Scholar 

  27. V. Moncrief, Gauge-invariant perturbations of Reissner-Nordstrom black holes, Phys. Rev. D 12 (1975) 1526 [INSPIRE].

    ADS  Google Scholar 

  28. D. Chitre, Perturbations of Charged Black Holes, Phys. Rev. D 13 (1976) 2713 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. C.H. Lee, Coupled gravitational and electromagnetic perturbations around a charged black hole, J. Math. Phys. 17 (1976) 1226.

    Article  ADS  Google Scholar 

  30. Chul Hoon Lee and W. D. McGlinn, Uniqueness of perturbation of a Reissner-Nordstrom black hole, J. Math. Phys. 17 (1976) 2159.

    Article  ADS  Google Scholar 

  31. S. Chandrasekhar, The mathematical theory of black holes, Oxford, UK, Clarendon (1985).

    Google Scholar 

  32. J. Bicak, On the theories of the interacting perturbations of the Reissner-Nordstrom black hole, Czech. J. Phys. B 29 (1979) 945.

    MathSciNet  ADS  Google Scholar 

  33. V. Moncrief, Gravitational perturbations of spherically symmetric systems. I. The exterior problem., Annals Phys. 88 (1974) 323 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. P. Bizon and H. Friedrich, A remark about wave equations on the extreme Reissner-Nordström black hole exterior, Class. Quantum Grav. 30 (2013) 065001 [arXiv:1212.0729] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S. Aretakis, A note on instabilities of extremal black holes under scalar perturbations from afar, arXiv:1212.1103 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiju Murata.

Additional information

ArXiv ePrint: 1212.2557

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucietti, J., Murata, K., Reall, H.S. et al. On the horizon instability of an extreme Reissner-Nordström black hole. J. High Energ. Phys. 2013, 35 (2013). https://doi.org/10.1007/JHEP03(2013)035

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)035

Keywords

Navigation