Skip to main content
Log in

Pointlike probes of superstring-theoretic superfluids

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In analogy with an experimental setup used in liquid helium, we use a pointlike probe to study superfluids which have a gravity dual. In the gravity description, the probe is represented by a hanging string. We demonstrate that there is a critical velocity below which the probe particle feels neither drag nor stochastic forces. Above this critical velocity, there is power-law scaling for the drag force, and the stochastic forces are characterized by a finite, velocity-dependent temperature. This temperature participates in two simple and general relations between the drag force and stochastic forces. The formula we derive for the critical velocity indicates that the low-energy excitations are massless, and they demonstrate the power of stringy methods in describing strongly coupled superfluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  2. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  3. P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: vector hair for an AdS black hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [SPIRES].

    ADS  Google Scholar 

  4. C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  5. S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].

    Article  MathSciNet  Google Scholar 

  6. S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett. B 683 (2010) 201 [arXiv:0908.0011] [SPIRES].

    Google Scholar 

  7. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  8. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  10. D.R. Allum, P.V.E. McClintock, A. Phillips and R.M. Bowley, The breakdown of superfluidity in liquid 4 He: an experimental test of Landau’s theory, Phil. Trans. Roy. Soc. Lond. A 284 (1977) 179.

    ADS  Google Scholar 

  11. C. Hoyos-Badajoz, Drag and jet quenching of heavy quarks in a strongly coupled N = 2* plasma, JHEP 09 (2009) 068 [arXiv:0907.5036] [SPIRES].

    Article  Google Scholar 

  12. J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [SPIRES].

    Article  ADS  Google Scholar 

  13. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].

    Article  MathSciNet  Google Scholar 

  14. S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601 [arXiv:0807.1737] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. U. Gürsoy, E. Kiritsis, G. Michalogiorgakis and F. Nitti, Thermal transport and drag force in improved holographic QCD, JHEP 12 (2009) 056 [arXiv:0906.1890] [SPIRES].

    Article  Google Scholar 

  18. C.P. Herzog, Energy loss of heavy quarks from asymptotically AdS geometries, JHEP 09 (2006) 032 [hep-th/0605191] [SPIRES].

    Article  ADS  Google Scholar 

  19. S.S. Gubser, Time warps, JHEP 01 (2010) 020 [arXiv:0812.5107] [SPIRES].

    Article  Google Scholar 

  20. H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [SPIRES].

    Article  ADS  Google Scholar 

  21. B. Carter and D. Langlois, The equation of state for cool relativistic two constituent superfluid dynamics, Phys. Rev. D 51 (1995) 5855 [hep-th/9507058] [SPIRES].

    ADS  Google Scholar 

  22. C.P. Herzog and A. Yarom, Sound modes in holographic superfluids, Phys. Rev. D 80 (2009) 106002 [arXiv:0906.4810] [SPIRES].

    Google Scholar 

  23. S.S. Gubser and A. Nellore, Low-temperature behavior of the Abelian Higgs model in anti-de Sitter space, JHEP 04 (2009) 008 [arXiv:0810.4554] [SPIRES].

    Article  ADS  Google Scholar 

  24. D.T. Son, Hydrodynamics of relativisic systems with broken continuous symmetries, Int. J. Mod. Phys. A 16S1C (2001) 1284 [hep-ph/0011246] [SPIRES].

    Google Scholar 

  25. A. Yarom, Fourth sound of holographic superfluids, JHEP 07 (2009) 070 [arXiv:0903.1353] [SPIRES].

    Article  ADS  Google Scholar 

  26. J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [SPIRES].

    ADS  Google Scholar 

  27. S.S. Gubser, Momentum fluctuations of heavy quarks in the gauge-string duality, Nucl. Phys. B 790 (2008) 175 [hep-th/0612143] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. J. Casalderrey-Solana and D. Teaney, Transverse momentum broadening of a fast quark in a N = 4 Yang-Mills plasma, JHEP 04 (2007) 039 [hep-th/0701123] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. G.C. Giecold, E. Iancu and A.H. Mueller, Stochastic trailing string and Langevin dynamics from AdS/CFT, JHEP 07 (2009) 033 [arXiv:0903.1840] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. D.T. Son and D. Teaney, Thermal noise and stochastic strings in AdS/CFT, JHEP 07 (2009) 021 [arXiv:0901.2338] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. G.D. Moore and D. Teaney, How much do heavy quarks thermalize in a heavy ion collision?, Phys. Rev. C 71 (2005) 064904 [hep-ph/0412346] [SPIRES].

    ADS  Google Scholar 

  32. N. Evans, J. French, K. Jensen and E. Threlfall, Hadronization at the AdS wall, arXiv:0908.0407 [SPIRES].

  33. J. Casalderrey-Solana, D. Fernandez and D. Mateos, A new mechanism of quark energy loss, arXiv:0912.3717 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Yarom.

Additional information

ArXiv ePrint: 0908.1392

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubser, S.S., Yarom, A. Pointlike probes of superstring-theoretic superfluids. J. High Energ. Phys. 2010, 41 (2010). https://doi.org/10.1007/JHEP03(2010)041

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2010)041

Keywords

Navigation