Skip to main content
Log in

Time warps

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

I reconsider asymmetrically warped compactifications, in which time and space have different warp factors. I call such compactifications time warps if the bulk geometry has neither entropy nor temperature. I provide an example starting from an asymptotically AdS 5 spacetime where the speed of light, measured in a fixed coordinate system, is larger near the boundary than it is deep in the interior. This example follows the general plan of earlier work on superconducting black holes. To obtain a normalizable, four-dimensional graviton, one can introduce a Planck brane whose action includes a wrong-sign Einstein-Hilbert term. The equation of state of the Planck brane has w < −1, which is a violation of the null energy condition. I show, in an almost dimension-independent fashion, that such a violation must occur in a static time warp geometry. Time warps of the type I describe provide an extra-dimensional description of boost invariance as an emergent symmetry in the infrared. High-energy violations of Lorentz symmetry, if confined to a strongly coupled unparticle sector dual to the time warp geometry, might manifest themselves through unusual kinematic constraints. As an example, I explain how modifications of unparticle phase space would affect the decay of a heavy particle into a light visible sector particle plus unparticle stuff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum Configurations for Superstrings, Nucl. Phys. B 258 (1985) 46 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. G.W. Gibbons, Aspects of supergravity theories, Three lectures given at GIFT Seminar on Theoretical Physics, San Feliu de Guixols, Spain, Jun 4-11 (1984).

  4. J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [SPIRES].

    ADS  Google Scholar 

  5. H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. D. Mattingly, Modern tests of Lorentz invariance, Living Rev. Rel. 8 (2005) 5 [gr-qc/0502097] [SPIRES].

    Google Scholar 

  7. G. Kaelbermann and H. Halevi, Nearness through an extra dimension, gr-qc/9810083 [SPIRES].

  8. V.A. Rubakov and M.E. Shaposhnikov, Do We Live Inside a Domain Wall?, Phys. Lett. B 125 (1983) 136 [SPIRES].

    ADS  Google Scholar 

  9. M. Visser, An Exotic Class of Kaluza-Klein Models, Phys. Lett. B 159 (1985) 22 [hep-th/9910093] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. D.J.H. Chung and K. Freese, Can geodesics in extra dimensions solve the cosmological horizon problem?, Phys. Rev. D 62 (2000) 063513 [hep-ph/9910235] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. D. Youm, Brane world cosmologies with varying speed of light, Phys. Rev. D 63 (2001) 125011 [hep-th/0101228] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. J.W. Moffat, Superluminary universe: A Possible solution to the initial value problem in cosmology, Int. J. Mod. Phys. D 2 (1993) 351 [gr-qc/9211020] [SPIRES].

    ADS  Google Scholar 

  13. A.J. Albrecht and J. Magueijo, A time varying speed of light as a solution to cosmological puzzles, Phys. Rev. D 59 (1999) 043516 [astro-ph/9811018] [SPIRES].

    ADS  Google Scholar 

  14. J. Magueijo, New varying speed of light theories, Rept. Prog. Phys. 66 (2003) 2025 [astro-ph/0305457] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Langlois, Brane cosmology: An introduction, Prog. Theor. Phys. Suppl. 148 (2003) 181 [hep-th/0209261] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. C. Csáki, J. Erlich and C. Grojean, Gravitational Lorentz violations and adjustment of the cosmological constant in asymmetrically warped spacetimes, Nucl. Phys. B 604 (2001) 312 [hep-th/0012143] [SPIRES].

    Article  ADS  Google Scholar 

  17. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. E. Kiritsis, Supergravity, D-brane probes and thermal super Yang-Mills: A comparison, JHEP 10 (1999) 010 [hep-th/9906206] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. S.H.S. Alexander, On the varying speed of light in a brane-induced FRW universe, JHEP 11 (2000) 017 [hep-th/9912037] [SPIRES].

    Article  ADS  Google Scholar 

  20. P. Bowcock, C. Charmousis and R. Gregory, General brane cosmologies and their global spacetime structure, Class. Quant. Grav. 17 (2000) 4745 [hep-th/0007177] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. J.M. Cline and H. Firouzjahi, No-go theorem for horizon-shielded self-tuning singularities, Phys. Rev. D 65 (2002) 043501 [hep-th/0107198] [SPIRES].

    ADS  Google Scholar 

  22. S.L. Dubovsky, Tunneling into extra dimension and high-energy violation of Lorentz invariance, JHEP 01 (2002) 012 [hep-th/0103205] [SPIRES].

    Article  ADS  Google Scholar 

  23. C. Deffayet, G.R. Dvali, G. Gabadadze and A. Lue, Braneworld flattening by a cosmological constant, Phys. Rev. D 64 (2001) 104002 [hep-th/0104201] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. G.R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. A.R. Frey, String theoretic bounds on Lorentz-violating warped compactification, JHEP 04 (2003) 012 [hep-th/0301189] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. O.J. Ganor, A New Lorentz Violating Nonlocal Field Theory From String- Theory, Phys. Rev. D 75 (2007) 025002 [hep-th/0609107] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. P. Creminelli, Holography of asymmetrically warped space-times, Phys. Lett. B 532 (2002) 284 [hep-th/0111107] [SPIRES].

    ADS  Google Scholar 

  28. J.M. Cline and L. Valcarcel, Asymmetrically warped compactifications and gravitational Lorentz violation, JHEP 03 (2004) 032 [hep-ph/0312245] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601 [arXiv:0807.1737] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  31. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  32. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. S.S. Gubser and A. Nellore, Low-temperature behavior of the Abelian Higgs model in anti-de Sitter space, JHEP 04 (2009) 008 [arXiv:0810.4554] [SPIRES].

    Article  ADS  Google Scholar 

  34. S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav. 22 (2005) 5121 [hep-th/0505189] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [SPIRES].

    ADS  Google Scholar 

  36. S.A. Hartnoll and C.P. Herzog, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: Vector Hair for an AdS Black Hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [SPIRES].

    ADS  Google Scholar 

  38. C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. S. Sachdev and M. Mueller, Quantum criticality and black holes, arXiv:0810.3005 [SPIRES].

  40. G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [SPIRES].

    ADS  Google Scholar 

  41. S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. M.M. Roberts and S.A. Hartnoll, Pseudogap and time reversal breaking in a holographic superconductor, JHEP 08 (2008) 035 [arXiv:0805.3898] [SPIRES].

    Article  Google Scholar 

  44. R. Manvelyan, E. Radu and D.H. Tchrakian, New AdS non Abelian black holes with superconducting horizons, Phys. Lett. B 677 (2009) 79 [arXiv:0812.3531] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  46. P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Ann. Phys. 144 (1982) 249 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [SPIRES].

  50. H. Georgi, Unparticle Physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [SPIRES].

    Article  ADS  Google Scholar 

  51. S.R. Das and S.D. Mathur, Comparing decay rates for black holes and D-branes, Nucl. Phys. B 478 (1996) 561 [hep-th/9606185] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. I.R. Klebanov, World-volume approach to absorption by non-dilatonic branes, Nucl. Phys. B 496 (1997) 231 [hep-th/9702076] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. S.S. Gubser, Absorption of photons and fermions by black holes in four dimensions, Phys. Rev. D 56 (1997) 7854 [hep-th/9706100] [SPIRES].

    ADS  Google Scholar 

  54. S.S. Gubser and I.R. Klebanov, Absorption by branes and Schwinger terms in the world volume theory, Phys. Lett. B 413 (1997) 41 [hep-th/9708005] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  56. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  57. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  58. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. S.S. Gubser, A. Nellore, S.S. Pufu and F.D. Rocha, Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics, Phys. Rev. Lett. 101 (2008) 131601 [arXiv:0804.1950] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. S.S. Gubser, S.S. Pufu and F.D. Rocha, Bulk viscosity of strongly coupled plasmas with holographic duals, JHEP 08 (2008) 085 [arXiv:0806.0407] [SPIRES].

    Article  ADS  Google Scholar 

  62. J. Polchinski and E. Witten, Evidence for Heterotic - Type I String Duality, Nucl. Phys. B 460 (1996) 525 [hep-th/95101699] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [SPIRES].

    ADS  Google Scholar 

  64. P. Hořava and E. Witten, Eleven-Dimensional Supergravity on a Manifold with Boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [SPIRES].

    ADS  Google Scholar 

  65. A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The universe as a domain wall, Phys. Rev. D 59 (1999) 086001 [hep-th/9803235] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  66. A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, Heterotic M-theory in five dimensions, Nucl. Phys. B 552 (1999) 246 [hep-th/9806051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  67. P. Binetruy, C. Deffayet and D. Langlois, Non-conventional cosmology from a brane-universe, Nucl. Phys. B 565 (2000) 269 [hep-th/9905012] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  68. C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-Inflation, Phys. Lett. B 458 (1999) 209 [hep-th/9904075] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  69. J.M. Cline, S. Jeon and G.D. Moore, The phantom menaced: Constraints on low-energy effective ghosts, Phys. Rev. D 70 (2004) 043543 [hep-ph/0311312] [SPIRES].

    ADS  Google Scholar 

  70. P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, Starting the universe: Stable violation of the null energy condition and non-standard cosmologies, JHEP 12 (2006) 080 [hep-th/0606090] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  71. M. Alcubierre, The warp drive: hyper-fast travel within general relativity, Class. Quant. Grav. 11 (1994) L73 [gr-qc/0009013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  72. C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, Essentials of k-essence, Phys. Rev. D 63 (2001) 103510 [astro-ph/0006373] [SPIRES].

    ADS  Google Scholar 

  73. V. Sahni and Y. Shtanov, Braneworld models of dark energy, JCAP 11 (2003) 014 [astro-ph/0202346] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  74. S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  75. E.I. Buchbinder, J. Khoury and B.A. Ovrut, New Ekpyrotic Cosmology, Phys. Rev. D 76 (2007) 123503 [hep-th/0702154] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  76. K. Marvel and D. Wesley, Tunneling with negative tension, JHEP 12 (2008) 034 [arXiv:0808.3186] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  77. S.R. Coleman and S.L. Glashow, High-Energy Tests of Lorentz Invariance, Phys. Rev. D 59 (1999) 116008 [hep-ph/9812418] [SPIRES].

    ADS  Google Scholar 

  78. T. Jacobson, S. Liberati and D. Mattingly, TeV astrophysics constraints on Planck scale Lorentz violation, Phys. Rev. D 66 (2002) 081302 [hep-ph/0112207] [SPIRES].

    ADS  Google Scholar 

  79. G.D. Moore and A.E. Nelson, Lower bound on the propagation speed of gravity from gravitational Cherenkov radiation, JHEP 09 (2001) 023 [hep-ph/0106220] [SPIRES].

    Article  ADS  Google Scholar 

  80. S. Chadha and H.B. Nielsen, Lorentz invariance as a low-energy phenomenon, Nucl. Phys. B 217 (1983) 125 [SPIRES].

    Article  ADS  Google Scholar 

  81. K. Peeters, J. Sonnenschein and M. Zamaklar, Holographic melting and related properties of mesons in a quark gluon plasma, Phys. Rev. D 74 (2006) 106008 [hep-th/0606195] [SPIRES].

    ADS  Google Scholar 

  82. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  83. H. Liu, K. Rajagopal and U.A. Wiedemann, An AdS/CFT calculation of screening in a hot wind, Phys. Rev. Lett. 98 (2007) 182301 [hep-ph/0607062] [SPIRES].

    Article  ADS  Google Scholar 

  84. M. Chernicoff, J.A. Garcia and A. Guijosa, The energy of a moving quark-antiquark pair in an N = 4 SYM plasma, JHEP 09 (2006) 068 [hep-th/0607089] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  85. D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  86. Q.J. Ejaz, T. Faulkner, H. Liu, K. Rajagopal and U.A. Wiedemann, A limiting velocity for quarkonium propagation in a strongly coupled plasma via AdS/CFT, JHEP 04 (2008) 089 [arXiv:0712.0590] [SPIRES].

    Article  Google Scholar 

  87. P.C. Argyres, M. Edalati and J.F. Vazquez-Poritz, Lightlike Wilson loops from AdS/CFT, JHEP 03 (2008) 071 [arXiv:0801.4594] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  88. J. Casalderrey-Solana and D. Mateos, Prediction of a Photon Peak in Relativistic Heavy Ion Collisions, Phys. Rev. Lett. 102 (2009) 192302 [arXiv:0806.4172] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven S. Gubser.

Additional information

ArXiv ePrint: 0812.5107

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubser, S.S. Time warps. J. High Energ. Phys. 2010, 20 (2010). https://doi.org/10.1007/JHEP01(2010)020

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2010)020

Keywords

Navigation