Skip to main content
Log in

A tale of two cascades: Higgsing and Seiberg-duality cascades from type IIB string theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct explicitly new solutions of type IIB supergravity with brane sources, the duals of which are \( \mathcal{N} = {1} \) supersymmetric field theories exhibiting two very interesting phenomena. The far UV dynamics is controlled by a cascade of Seiberg dualities analog to the Klebanov-Strassler backgrounds. At intermediate scales a cascade of Higgsing appears, in the sense that the gauge group undergoes a sequence of spontaneous symmetry breaking steps which reduces its rank. Deep in the IR, the theory confines, and the gravity background has a non-singular end of space. We explain in detail how to generate such solutions, discuss some of the Physics associated with them and briefly comment on the possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Wilson, The Renormalization Group and Strong Interactions, Phys. Rev. D 3 (1971) 1818 [INSPIRE].

    ADS  Google Scholar 

  2. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  3. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  5. N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. J. Polchinski and M.J. Strassler, The String dual of a confining four-dimensional gauge theory, hep-th/0003136 [INSPIRE].

  7. K. Pilch and N.P. Warner, N = 1 supersymmetric renormalization group flows from IIB supergravity, Adv. Theor. Math. Phys. 4 (2002) 627 [hep-th/0006066] [INSPIRE].

    MathSciNet  Google Scholar 

  8. I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. I.R. Klebanov and A.A. Tseytlin, Gravity duals of supersymmetric SU(N ) x SU(N + M) gauge theories, Nucl. Phys. B 578 (2000) 123 [hep-th/0002159] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Dymarsky, I.R. Klebanov and N. Seiberg, On the moduli space of the cascading SU(M + p) x SU(P ) gauge theory, JHEP 01 (2006) 155 [hep-th/0511254] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. O. Aharony, A. Buchel and A. Yarom, Short distance properties of cascading gauge theories, JHEP 11 (2006) 069 [hep-th/0608209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. O. Aharony, A. Buchel and A. Yarom, Holographic renormalization of cascading gauge theories, Phys. Rev. D 72 (2005) 066003 [hep-th/0506002] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  15. J.M. Maldacena and C. Núñez, Towards the large-N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Andrews and N. Dorey, Deconstruction of the Maldacena-Núñez compactification, Nucl. Phys. B 751 (2006) 304 [hep-th/0601098] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Andrews and N. Dorey, Spherical deconstruction, Phys. Lett. B 631 (2005) 74 [hep-th/0505107] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. F. Bigazzi, A. Cotrone, M. Petrini and A. Zaffaroni, Supergravity duals of supersymmetric four-dimensional gauge theories, Riv. Nuovo Cim. 25N12 (2002) 1 [hep-th/0303191] [INSPIRE].

    Google Scholar 

  19. M. Bertolini, Four lectures on the gauge/gravity correspondence, Int. J. Mod. Phys. A 18 (2003) 5647 [hep-th/0303160]. Lectures given at SISSA/ISAS Trieste, Dec 17-20,2002 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. S.S. Gubser, C.P. Herzog and I.R. Klebanov, Variations on the warped deformed conifold, Comptes Rendus Physique 5 (2004) 1031 [hep-th/0409186] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. C.P. Herzog, I.R. Klebanov and P. Ouyang, D-branes on the conifold and N = 1 gauge/gravity dualities, hep-th/0205100 [INSPIRE].

  22. O. Aharony, The NonAdS/nonCFT correspondence, or three different paths to QCD, hep-th/0212193 [INSPIRE].

  23. J.D. Edelstein and R. Portugues, Gauge/string duality in confining theories, Fortsch. Phys. 54 (2006) 525 [hep-th/0602021] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in Gauge/Gravity Duals - A Review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE].

    Article  ADS  Google Scholar 

  25. C. Núñez, A. Paredes and A.V. Ramallo, Unquenched Flavor in the Gauge/Gravity Correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].

    Google Scholar 

  26. F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, Holographic Duals of Quark Gluon Plasmas with Unquenched Flavors, arXiv:1110.1744 [INSPIRE].

  27. J. Maldacena and D. Martelli, The Unwarped, resolved, deformed conifold: Fivebranes and the baryonic branch of the Klebanov-Strassler theory, JHEP 01 (2010) 104 [arXiv:0906.0591] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  28. D. Elander, J. Gaillard, C. Núñez and M. Piai, Towards multi-scale dynamics on the baryonic branch of Klebanov-Strassler, JHEP 07 (2011) 056 [arXiv:1104.3963] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Gaillard, D. Martelli, C. Núñez and I. Papadimitriou, The warped, resolved, deformed conifold gets flavoured, Nucl. Phys. B 843 (2011) 1 [arXiv:1004.4638] [INSPIRE].

    Article  ADS  Google Scholar 

  30. R. Minasian, M. Petrini and A. Zaffaroni, New families of interpolating type IIB backgrounds, JHEP 04 (2010) 080 [arXiv:0907.5147] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. N. Halmagyi, Missing Mirrors: Type IIA Supergravity on the Resolved Conifold, arXiv:1003.2121 [INSPIRE].

  32. E. Caceres, C. Núñez and L.A. Pando-Zayas, Heating up the Baryonic Branch with U-duality: A Unified picture of conifold black holes, JHEP 03 (2011) 054 [arXiv:1101.4123] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. Bennett, E. Caceres, C. Núñez, D. Schofield and S. Young, The non-SUSY Baryonic Branch: Soft Supersymmetry Breaking of N = 1 Gauge Theories, arXiv:1111.1727 [INSPIRE].

  34. A. Butti, M. Graña, R. Minasian, M. Petrini and A. Zaffaroni, The Baryonic branch of Klebanov-Strassler solution: A supersymmetric family of SU(3) structure backgrounds, JHEP 03 (2005) 069 [hep-th/0412187] [INSPIRE].

    Article  ADS  Google Scholar 

  35. O. Aharony, A Note on the holographic interpretation of string theory backgrounds with varying flux, JHEP 03 (2001) 012 [hep-th/0101013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. E. Conde, J. Gaillard, C. Nunez, M. Piai and A.V. Ramallo, Towards the String Dual of Tumbling and Cascading Gauge Theories, arXiv:1112.3346, to appear in Phys Lett. B (2012).

  37. R. Casero, C. Núñez and A. Paredes, Towards the string dual of N = 1 SQCD-like theories, Phys. Rev. D 73 (2006) 086005 [hep-th/0602027] [INSPIRE].

    ADS  Google Scholar 

  38. C. Hoyos-Badajoz, C. Núñez and I. Papadimitriou, Comments on the String dual to N = 1 SQCD, Phys. Rev. D 78 (2008) 086005 [arXiv:0807.3039] [INSPIRE].

    ADS  Google Scholar 

  39. R. Casero, C. Núñez and A. Paredes, Elaborations on the String Dual to N = 1 SQCD, Phys. Rev. D 77 (2008) 046003 [arXiv:0709.3421] [INSPIRE].

    ADS  Google Scholar 

  40. A.H. Chamseddine and M.S. Volkov, NonAbelian BPS monopoles in N = 4 gauged supergravity, Phys. Rev. Lett. 79 (1997) 3343 [hep-th/9707176] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1 backgrounds, JHEP 11 (2005) 048 [hep-th/0507099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. F. Bigazzi, R. Casero, A. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFTs with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. S. Bennett, Wilson loops in warped resolved deformed conifolds, Annals Phys. 326 (2011) 2934 [arXiv:1102.5731] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. E. Conde, J. Gaillard and A.V. Ramallo, On the holographic dual of N = 1 SQCD with massive flavors, JHEP 10 (2011) 023 [arXiv:1107.3803] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Unquenched flavors in the Klebanov-Witten model, JHEP 02 (2007) 090 [hep-th/0612118] [INSPIRE].

    Article  ADS  Google Scholar 

  46. F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Backreacting flavors in the Klebanov-Strassler background, JHEP 09 (2007) 109 [arXiv:0706.1238] [INSPIRE].

    Article  ADS  Google Scholar 

  47. F. Bigazzi, A.L. Cotrone, A. Paredes and A.V. Ramallo, The Klebanov-Strassler model with massive dynamical flavors, JHEP 03 (2009) 153 [arXiv:0812.3399] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. A. Barranco, E. Pallante and J.G. Russo, N = 1 SQCD-like theories with N f massive flavors from AdS/CFT and β-functions, JHEP 09 (2011) 086 [arXiv:1107.4002] [INSPIRE].

    Article  ADS  Google Scholar 

  49. S.S. Gubser, C.P. Herzog and I.R. Klebanov, Symmetry breaking and axionic strings in the warped deformed conifold, JHEP 09 (2004) 036 [hep-th/0405282] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Dymarsky, On gravity dual of a metastable vacuum in Klebanov-Strassler theory, JHEP 05 (2011) 053 [arXiv:1102.1734] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  53. I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. M.J. Strassler, The Duality cascade, hep-th/0505153 [INSPIRE].

  56. S. Dimopoulos and L. Susskind, Mass Without Scalars, Nucl. Phys. B 155 (1979) 237 [INSPIRE].

    Article  ADS  Google Scholar 

  57. E. Eichten and K.D. Lane, Dynamical Breaking of Weak Interaction Symmetries, Phys. Lett. B 90 (1980) 125 [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Weinberg, Implications of Dynamical Symmetry Breaking: An Addendum, Phys. Rev. D 19 (1979) 1277. [INSPIRE].

    ADS  Google Scholar 

  59. L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].

    ADS  Google Scholar 

  60. S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].

    ADS  Google Scholar 

  61. B. Holdom, Techniodor, Phys. Lett. B 150 (1985) 301 [INSPIRE].

    Article  ADS  Google Scholar 

  62. K. Yamawaki, M. Bando and K.-i. Matumoto, Scale Invariant Technicolor Model and a Technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [INSPIRE].

    Article  ADS  Google Scholar 

  63. T.W. Appelquist, D. Karabali and L. Wijewardhana, Chiral Hierarchies and the Flavor Changing Neutral Current Problem in Technicolor, Phys. Rev. Lett. 57 (1986) 957 [INSPIRE].

    Article  ADS  Google Scholar 

  64. R. Chivukula, Lectures on technicolor and compositeness, hep-ph/0011264 [INSPIRE].

  65. K. Lane, Two lectures on technicolor, hep-ph/0202255 [INSPIRE].

  66. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [INSPIRE].

    Article  ADS  Google Scholar 

  67. A. Martin, Technicolor Signals at the LHC, arXiv:0812.1841 [INSPIRE].

  68. F. Sannino, Conformal Dynamics for TeV Physics and Cosmology, Acta Phys. Polon. B 40 (2009) 3533 [arXiv:0911.0931] [INSPIRE].

    Google Scholar 

  69. M. Piai, Lectures on walking technicolor, holography and gauge/gravity dualities, Adv. High Energy Phys. 2010 (2010) 464302 [arXiv:1004.0176] [INSPIRE].

    Google Scholar 

  70. T. Appelquist and R. Shrock, Neutrino masses in theories with dynamical electroweak symmetry breaking, Phys. Lett. B 548 (2002) 204 [hep-ph/0204141] [INSPIRE].

    Article  ADS  Google Scholar 

  71. T. Appelquist and R. Shrock, Dynamical symmetry breaking of extended gauge symmetries, Phys. Rev. Lett. 90 (2003) 201801 [hep-ph/0301108]. 4 pages, latex Journal-ref: Phys. Rev. Lett. 90, 201801 (2003) [INSPIRE].

    Article  ADS  Google Scholar 

  72. T. Appelquist, M. Piai and R. Shrock, Fermion masses and mixing in extended technicolor models, Phys. Rev. D 69 (2004) 015002 [hep-ph/0308061] [INSPIRE].

    ADS  Google Scholar 

  73. T. Appelquist, M. Piai and R. Shrock, Lepton dipole moments in extended technicolor models, Phys. Lett. B 593 (2004) 175 [hep-ph/0401114] [INSPIRE].

    Article  ADS  Google Scholar 

  74. T. Appelquist, M. Piai and R. Shrock, Quark dipole operators in extended technicolor models, Phys. Lett. B 595 (2004) 442 [hep-ph/0406032] [INSPIRE].

    Article  ADS  Google Scholar 

  75. T. Appelquist, N.D. Christensen, M. Piai and R. Shrock, Flavor-changing processes in extended technicolor, Phys. Rev. D 70 (2004) 093010 [hep-ph/0409035] [INSPIRE].

    ADS  Google Scholar 

  76. P. Sikivie, L. Susskind, M.B. Voloshin and V.I. Zakharov, Isospin Breaking in Technicolor Models, Nucl. Phys. B 173 (1980) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  77. T. Appelquist and J. Terning, An Extended technicolor model, Phys. Rev. D 50 (1994) 2116 [hep-ph/9311320] [INSPIRE].

    ADS  Google Scholar 

  78. T. Appelquist and F. Sannino, The Physical spectrum of conformal SU(N) gauge theories, Phys. Rev. D 59 (1999) 067702 [hep-ph/9806409] [INSPIRE].

    ADS  Google Scholar 

  79. T. Appelquist and L. Wijewardhana, Chiral Hierarchies from Slowly Running Couplings in Technicolor Theories, Phys. Rev. D 36 (1987) 568 [INSPIRE].

    ADS  Google Scholar 

  80. D. Elander, C. Núñez and M. Piai, A Light scalar from walking solutions in gauge-string duality, Phys. Lett. B 686 (2010) 64 [arXiv:0908.2808] [INSPIRE].

    Article  ADS  Google Scholar 

  81. C. Núñez, M. Piai and A. Rago, Wilson Loops in string duals of Walking and Flavored Systems, Phys. Rev. D 81 (2010) 086001 [arXiv:0909.0748] [INSPIRE].

    ADS  Google Scholar 

  82. J. Alanen, T. Alho, K. Kajantie and K. Tuominen, Mass spectrum and thermodynamics of quasi-conformal gauge theories from gauge/gravity duality, Phys. Rev. D 84 (2011) 086007 [arXiv:1107.3362] [INSPIRE].

    ADS  Google Scholar 

  83. L. Anguelova, P. Suranyi and L. Wijewardhana, Holographic Walking Technicolor from D-branes, Nucl. Phys. B 852 (2011) 39 [arXiv:1105.4185] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. D. Elander and M. Piai, Light scalars from a compact fifth dimension, JHEP 01 (2011) 026 [arXiv:1010.1964] [INSPIRE].

    Article  ADS  Google Scholar 

  85. L. Anguelova, Electroweak Symmetry Breaking from Gauge/Gravity Duality, Nucl. Phys. B 843 (2011) 429 [arXiv:1006.3570] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  86. R. Alvares, N. Evans, A. Gebauer and G.J. Weatherill, Holographic integral equations and walking technicolour, Phys. Rev. D 81 (2010) 025013 [arXiv:0910.3073] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Núñez.

Additional information

ArXiv ePrint: 1112.3350

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conde, E., Gaillard, J., Núñez, C. et al. A tale of two cascades: Higgsing and Seiberg-duality cascades from type IIB string theory. J. High Energ. Phys. 2012, 145 (2012). https://doi.org/10.1007/JHEP02(2012)145

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)145

Keywords

Navigation