Skip to main content
Log in

Coadjoint orbits of the Virasoro group

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The coadjoint orbits of the Virasoro group, which have been investigated by Lazutkin and Pankratova and by Segal, should according to the Kirillov-Kostant theory be related to the unitary representations of the Virasoro group. In this paper, the classification of orbits is reconsidered, with an explicit description of the possible centralizers of coadjoint orbits. The possible orbits are diff(S 1) itself, diff(S 1)/S 1, and diff(S 1)/SL (n)(2,R), withSL (n)(2,R) a certain discrete series of embeddings ofSL(2,R) in diff(S 1), and diffS 1/T, whereT may be any of certain rather special one parameter subgroups of diffS 1. An attempt is made to clarify the relation between orbits and representations. It appears that quantization of diffS 1/S 1 is related to unitary representations with nondegenerate Kac determinant (unitary Verma modules), while quantization of diffS 1/SL (n)(2,R) is seemingly related to unitary representations with null vectors in leveln. A better understanding of how to quantize the relevant orbits might lead to a better geometrical understanding of Virasoro representation theory. In the process of investigating Virasoro coadjoint orbits, we observe the existence of left invariant symplectic structures on the Virasoro group manifold. As is described in an appendix, these give rise to Lie bialgebra structures with the Virasoro algebra as the underlying Lie algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pressley, A., Segal, G.: Loop groups. Oxford: Clarendon Press 1986

    Google Scholar 

  2. Lazutkin, V.F., Pankratova, T.F.: Funkts. Anal. Prilozh.9 (1975)

  3. Segal, G.: Unitary representations of some infinite dimensional groups. Commun. Math. Phys.80, 307 (1981)

    Google Scholar 

  4. Bowick, M.J., Rajeev, S.G.: String theory as the holomorphic geometry of loop space. The holomorphic geometry of closed bosonic string theory and diffS 1/S 1, MIT preprints, November 1986 and February, 1987

  5. Kirillov, A.A., Yurzev, D.B.: Kahler geometry of the infinite dimensional homogeneous manifoldM = diff+ S 1/RotS 1. Preprint (1987)

  6. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry of critical fluctuations in two dimensions. J. Stat. Phys.34, 763 (1984); Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys.B 241, 333 (1984)

    Google Scholar 

  7. Gervais, J.-L., Neveu, A.: Dual string spectrum in Polyakov's quantization (II). Mode separation. Nucl. Phys.B 209, 125 (1982). New quantum treatment of Liouville field theory.B 224, 329 (1983)

    Google Scholar 

  8. Friedan, D., Qiu, Z., Shenker, S.: Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett.52, 1575 (1984) and in: Vertex operators in mathematics and physics. Lepowsky, J. et al. (eds.). Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  9. Gervais, J.L.: Infinite family of polynomial functions of the Virasoro generators with vanishing poisson brackets. Phys. Lett.160 B, 277 (1985); Transport matrices associated with the Virasoro algebra. Phys. Lett.160 B, 281 (1985)

    Google Scholar 

  10. Thorn, C.B.: Computing the Kac determinant using dual model techniques, and more about the no-ghost theorem. Nucl. Phys. B248, 551 (1984)

    Google Scholar 

  11. Kirillov, A.A.: Elements of the theory of representations. Berlin, Heidelberg, New York: Springer 1975, Chap. 15

    Google Scholar 

  12. Crnkovic, C., Witten, E.: Covariant description of canonical formalism in geometrical theories. Princeton preprint (1986), to appear in the Newton Tercentenary Volume (Hawking, S., Israel, W. (eds.))

  13. Atiyah, M.F., Singer, I.: Ann. Math.87, 484, 586 (1968)

    Google Scholar 

  14. Atiyah, M.F., Segal, G.B.: Ann. Math.87, 531 (1968)

    Google Scholar 

  15. Witten, E.: Fermion quantum numbers in Kaluza-Klein theory. In: The proceedings of the 1983 Shelter Island conference on quantum field theory and the foundations of physics. Khuri, N. et al. (eds.). MIT Press 1985

  16. Vogan, D.: Lecture at the symposium on the mathematical heritage of Hermann Weyl. Durham, North Carolina, May, 1987

  17. Brill, D., Deser, S.: Variational methods and positive energy in general relativity. Ann. Phys. (NY)50, 548 (1968)

    Google Scholar 

  18. Polyakov, A.M.: Quantum geometry of Bosonic strings. Phys. Lett.103B, 207 (1981)

    Google Scholar 

  19. Kac, V.G.: Proceedings of the international congress of mathematicians. Helsinki, 1978. Lecture Notes in Physics, Vol. 94, p. 441. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  20. Feigin, B.L., Fuchs, D.B.: Funct. Anal. Appl.16, 114 (1982)

    Google Scholar 

  21. Rocha-Caridi, A.: Vacuum vector representations of the Virasoro algebra. In: Vertex operators in mathematics and physics. Lepowsky, J. et al. (eds.). Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  22. Moore, G., Witten, E.: Preprint (to appear)

  23. Drinfeld, V.G.: Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations. Sov. Math. Doklady32, 68 (1983); Hopf algebras and the quantum Yang-Baxter equation. Sov. Math. Doklady32, 254 (1985); Quantum groups. To appear in the proceedings of the international congress of mathematicians (Berkeley 1986)

    Google Scholar 

  24. Yang, C.N.: Some exact results for the many-body problem in one-dimension with repulsive delta-function interaction. Phys. Rev. Lett.19, 1312 (1967)

    Google Scholar 

  25. Baxter, R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. (NY)70, 193 (1972)

    Google Scholar 

  26. Kulish, P.P., Sklyanin, E.K.: Solutions of the Yang-Baxter equation. Sov. Math. J.19, 1596 (1982)

    Google Scholar 

  27. Belavin, A.A., Drinfeld, V.G.: Triangle equations and simple Lie algebras. Sov. Sci. Rev. Sect. C4, 93 (1984)

    Google Scholar 

  28. Chudnovsky, D.V.: Backlünd transformations and geometric and complex analytic background for construction of completely integrable lattice systems. In: Symmetries in particle physics. Bars, I. et al. (eds.). New York: Plenum 1984

    Google Scholar 

  29. Fadde'ev, L.D., Takhtajan, L.A.: Hamiltonian approach to soliton theory. Berlin, Heidelberg, New York: Springer 1987 (to appear)

    Google Scholar 

  30. Fadde'ev, L.D.: Integrable models in 1 + 1 dimensions. In: The proceedings of the école d'été de physique theorique. Les Houches (1982)

  31. Gelfand, I.M., Dorfman, I.Ya.: Hamiltonian operators and the classical Yang-Baxter equation. Funkts. Anal. Prilozh.16, 1 (1982)

    Google Scholar 

  32. Ooms, A.I.: Commun. Algebra8, (1) 13 (1982)

    Google Scholar 

  33. Eliashvili, A.G.: Frobenius Lie algebras. Funkts. Anal. (1982)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Research supported in part by NSF grants PHY 80-19754 and 86-16129

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witten, E. Coadjoint orbits of the Virasoro group. Commun.Math. Phys. 114, 1–53 (1988). https://doi.org/10.1007/BF01218287

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01218287

Keywords

Navigation