Skip to main content
Log in

Warm inflection

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

While ubiquitous in supersymmetric and string theory models, inflationary scenarios near an inflection point in the scalar potential generically require a severe fine-tuning of a priori unrelated supersymmetry breaking effects. We show that this can be significantly alleviated by the inclusion of dissipative effects that damp the inflaton’s motion and produce a nearly-thermal radiation bath. We focus on the case where the slow-rolling inflaton directly excites heavy virtual modes that then decay into light degrees of freedom, although our main qualitative results should apply in other regimes. Furthermore, our analysis shows that the minimum amount of dissipation required to keep the temperature of the radiation bath above the Hubble rate during inflation is largely independent of the degree of flatness of the potential, although it depends on the field value at the inflection point. We then discuss the relevance of this result to warm inflation model building.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

    ADS  Google Scholar 

  2. A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

    Article  ADS  Google Scholar 

  3. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. D. Baumann and L. McAllister, Advances in inflation in string theory, Ann. Rev. Nucl. Part. Sci. 59 (2009) 67 [arXiv:0901.0265] [INSPIRE].

    Article  ADS  Google Scholar 

  5. T. Gherghetta, C.F. Kolda and S.P. Martin, Flat directions in the scalar potential of the supersymmetric standard model, Nucl. Phys. B 468 (1996) 37 [hep-ph/9510370] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Allahverdi, K. Enqvist, J. García-Bellido and A. Mazumdar, Gauge invariant MSSM inflaton, Phys. Rev. Lett. 97 (2006) 191304 [hep-ph/0605035] [INSPIRE].

    Article  ADS  Google Scholar 

  7. R. Allahverdi, A. Kusenko and A. Mazumdar, A-term inflation and the smallness of neutrino masses, JCAP 07 (2007) 018 [hep-ph/0608138] [INSPIRE].

    Article  ADS  Google Scholar 

  8. J.C. Bueno Sanchez, K. Dimopoulos and D.H. Lyth, A-term inflation and the MSSM, JCAP 01 (2007) 015 [hep-ph/0608299] [INSPIRE].

    Article  ADS  Google Scholar 

  9. R. Allahverdi, K. Enqvist, J. García-Bellido, A. Jokinen and A. Mazumdar, MSSM flat direction inflation: slow roll, stability, fine tunning and reheating, JCAP 06 (2007) 019 [hep-ph/0610134] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Allahverdi, B. Dutta and A. Mazumdar, Probing the parameter space for an MSSM inflation and the neutralino dark matter, Phys. Rev. D 75 (2007) 075018 [hep-ph/0702112] [INSPIRE].

    ADS  Google Scholar 

  11. R. Allahverdi, B. Dutta and A. Mazumdar, Unifying inflation and dark matter with neutrino masses, Phys. Rev. Lett. 99 (2007) 261301 [arXiv:0708.3983] [INSPIRE].

    Article  ADS  Google Scholar 

  12. Z. Lalak and K. Turzynski, Back-door fine-tuning in supersymmetric low scale inflation, Phys. Lett. B 659 (2008) 669 [arXiv:0710.0613] [INSPIRE].

    ADS  Google Scholar 

  13. R. Allahverdi, B. Dutta and Y. Santoso, MSSM inflation, dark matter and the LHC, Phys. Rev. D 82 (2010) 035012 [arXiv:1004.2741] [INSPIRE].

    ADS  Google Scholar 

  14. K. Enqvist, A. Mazumdar and P. Stephens, Inflection point inflation within supersymmetry, JCAP 06 (2010) 020 [arXiv:1004.3724] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R. Allahverdi, S. Downes and B. Dutta, Constructing flat inflationary potentials in supersymmetry, Phys. Rev. D 84 (2011) 101301 [arXiv:1106.5004] [INSPIRE].

    ADS  Google Scholar 

  16. A. Chatterjee and A. Mazumdar, Tuned MSSM Higgses as an inflaton, JCAP 09 (2011) 009 [arXiv:1103.5758] [INSPIRE].

    Article  ADS  Google Scholar 

  17. C. Boehm, J. Da Silva, A. Mazumdar and E. Pukartas, Probing the supersymmetric inflaton and dark matter link via the CMB, LHC and XENON1T experiments, arXiv:1205.2815 [INSPIRE].

  18. S. Hotchkiss, A. Mazumdar and S. Nadathur, Inflection point inflation: WMAP constraints and a solution to the fine-tuning problem, JCAP 06 (2011) 002 [arXiv:1101.6046] [INSPIRE].

    Article  ADS  Google Scholar 

  19. K. Enqvist, L. Mether and S. Nurmi, Supergravity origin of the MSSM inflation, JCAP 11 (2007) 014 [arXiv:0706.2355] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Mazumdar, S. Nadathur and P. Stephens, Inflation with large supergravity corrections, Phys. Rev. D 85 (2012) 045001 [arXiv:1105.0430] [INSPIRE].

    ADS  Google Scholar 

  21. R. Allahverdi, A.R. Frey and A. Mazumdar, Graceful exit from a stringy landscape via MSSM inflation, Phys. Rev. D 76 (2007) 026001 [hep-th/0701233] [INSPIRE].

    ADS  Google Scholar 

  22. S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, Holographic systematics of D-brane inflation, JHEP 03 (2009) 093 [arXiv:0808.2811] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, Compactification effects in D-brane inflation, Phys. Rev. Lett. 104 (2010) 251602 [arXiv:0912.4268] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, D3-brane potentials from fluxes in AdS/CFT, JHEP 06 (2010) 072 [arXiv:1001.5028] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Ali, A. Deshamukhya, S. Panda and M. Sami, Inflation with improved D3-brane potential and the fine tunings associated with the model, Eur. Phys. J. C 71 (2011) 1672 [arXiv:1010.1407] [INSPIRE].

    Article  ADS  Google Scholar 

  27. N. Agarwal, R. Bean, L. McAllister and G. Xu, Universality in D-brane inflation, JCAP 09 (2011) 002 [arXiv:1103.2775] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.J. Blanco-Pillado et al., Racetrack inflation, JHEP 11 (2004) 063 [hep-th/0406230] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. A.D. Linde and A. Westphal, Accidental inflation in string theory, JCAP 03 (2008) 005 [arXiv:0712.1610] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. J.J. Blanco-Pillado, M. Gomez-Reino and K. Metallinos, Accidental inflation in the landscape, arXiv:1209.0796 [INSPIRE].

  31. A. Berera and L.-Z. Fang, Thermally induced density perturbations in the inflation era, Phys. Rev. Lett. 74 (1995) 1912 [astro-ph/9501024] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Berera, Warm inflation, Phys. Rev. Lett. 75 (1995) 3218 [astro-ph/9509049] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Berera, Thermal properties of an inflationary universe, Phys. Rev. D 54 (1996) 2519 [hep-th/9601134] [INSPIRE].

    ADS  Google Scholar 

  34. L.Z. Fang, Entropy generation in the early universe by dissipative processes near the Higgsphase transitions, Phys. Lett. B 95 (1980) 154 [INSPIRE].

    ADS  Google Scholar 

  35. I.G. Moss, Primordial inflation with spontaneous symmetry breaking, Phys. Lett. B 154 (1985) 120 [INSPIRE].

    ADS  Google Scholar 

  36. J. Yokoyama and K.-I. Maeda, On the dynamics of the power law inflation due to an exponential potential, Phys. Lett. B 207 (1988) 31 [INSPIRE].

    ADS  Google Scholar 

  37. A. Berera, M. Gleiser and R.O. Ramos, Strong dissipative behavior in quantum field theory, Phys. Rev. D 58 (1998) 123508 [hep-ph/9803394] [INSPIRE].

    ADS  Google Scholar 

  38. J. Yokoyama and A.D. Linde, Is warm inflation possible?, Phys. Rev. D 60 (1999) 083509 [hep-ph/9809409] [INSPIRE].

    ADS  Google Scholar 

  39. A. Berera, Warm inflation at arbitrary adiabaticity: a model, an existence proof for inflationary dynamics in quantum field theory, Nucl. Phys. B 585 (2000) 666 [hep-ph/9904409] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Berera and R.O. Ramos, The affinity for scalar fields to dissipate, Phys. Rev. D 63 (2001) 103509 [hep-ph/0101049] [INSPIRE].

    ADS  Google Scholar 

  41. A. Berera and R.O. Ramos, Construction of a robust warm inflation mechanism, Phys. Lett. B 567 (2003) 294 [hep-ph/0210301] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. L.M. Hall and I.G. Moss, Thermal effects on pure and hybrid inflation, Phys. Rev. D 71 (2005) 023514 [hep-ph/0408323] [INSPIRE].

    ADS  Google Scholar 

  43. A. Berera and R.O. Ramos, Absence of isentropic expansion in various inflation models, Phys. Lett. B 607 (2005) 1 [hep-ph/0308211] [INSPIRE].

    ADS  Google Scholar 

  44. A. Berera and R.O. Ramos, Dynamics of interacting scalar fields in expanding space-time, Phys. Rev. D 71 (2005) 023513 [hep-ph/0406339] [INSPIRE].

    ADS  Google Scholar 

  45. I.G. Moss and C. Xiong, Dissipation coefficients for supersymmetric inflatonary models, hep-ph/0603266 [INSPIRE].

  46. A. Berera, I.G. Moss and R.O. Ramos, Warm inflation and its microphysical basis, Rept. Prog. Phys. 72 (2009) 026901 [arXiv:0808.1855] [INSPIRE].

    Article  ADS  Google Scholar 

  47. I.G. Moss and C. Xiong, On the consistency of warm inflation, JCAP 11 (2008) 023 [arXiv:0808.0261] [INSPIRE].

    Article  ADS  Google Scholar 

  48. I.G. Moss and C.M. Graham, Particle production and reheating in the inflationary universe, Phys. Rev. D 78 (2008) 123526 [arXiv:0810.2039] [INSPIRE].

    ADS  Google Scholar 

  49. M. Bastero-Gil and A. Berera, Warm inflation model building, Int. J. Mod. Phys. A 24 (2009) 2207 [arXiv:0902.0521] [INSPIRE].

    ADS  Google Scholar 

  50. M. Bastero-Gil, A. Berera and R.O. Ramos, Dissipation coefficients from scalar and fermion quantum field interactions, JCAP 09 (2011) 033 [arXiv:1008.1929] [INSPIRE].

    Article  ADS  Google Scholar 

  51. M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, General dissipation coefficient in low-temperature warm inflation, arXiv:1207.0445 [INSPIRE].

  52. H.P. de Oliveira and R.O. Ramos, Dynamical system analysis for inflation with dissipation, Phys. Rev. D 57 (1998) 741 [gr-qc/9710093] [INSPIRE].

    ADS  Google Scholar 

  53. E. Gunzig, R. Maartens and A.V. Nesteruk, Inflationary cosmology and thermodynamics, Class. Quant. Grav. 15 (1998) 923 [astro-ph/9703137] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. M. Bellini, Power spectrum of the primordial scalar field fluctuations in the warm inflation scenario, Phys. Rev. D 58 (1998) 103518 [Erratum ibid. D 60 (1999) 089901] [INSPIRE].

  55. W. Lee and L.-Z. Fang, Mass density perturbations from inflation with thermal dissipation, Phys. Rev. D 59 (1999) 083503 [astro-ph/9901195] [INSPIRE].

    ADS  Google Scholar 

  56. J.M.F. Maia and J.A.S. Lima, Extended warm inflation, Phys. Rev. D 60 (1999) 101301 [astro-ph/9910568] [INSPIRE].

    ADS  Google Scholar 

  57. A.P. Billyard and A.A. Coley, Interactions in scalar field cosmology, Phys. Rev. D 61 (2000) 083503 [astro-ph/9908224] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  58. H.P. De Oliveira and S.E. Joras, On perturbations in warm inflation, Phys. Rev. D 64 (2001) 063513 [gr-qc/0103089] [INSPIRE].

    ADS  Google Scholar 

  59. I. Dymnikova and M. Khlopov, Decay of cosmological constant in selfconsistent inflation, Eur. Phys. J. C 20 (2001) 139 [INSPIRE].

    Article  ADS  Google Scholar 

  60. L.P. Chimento, A.S. Jakubi, N.A. Zuccala and D. Pavon, Synergistic warm inflation, Phys. Rev. D 65 (2002) 083510 [astro-ph/0201002] [INSPIRE].

    ADS  Google Scholar 

  61. H.P. De Oliveira, Density perturbations in warm inflation and COBE normalization, Phys. Lett. B 526 (2002) 1 [gr-qc/0202045] [INSPIRE].

    ADS  Google Scholar 

  62. R.H. Brandenberger and M. Yamaguchi, Spontaneous baryogenesis in warm inflation, Phys. Rev. D 68 (2003) 023505 [hep-ph/0301270] [INSPIRE].

    ADS  Google Scholar 

  63. R. Jeannerot and M. Postma, Confronting hybrid inflation in supergravity with CMB data, JHEP 05 (2005) 071 [hep-ph/0503146] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. J.P. Mimoso, A. Nunes and D. Pavon, Asymptotic behavior of the warm inflation scenario with viscous pressure, Phys. Rev. D 73 (2006) 023502 [gr-qc/0512057] [INSPIRE].

    ADS  Google Scholar 

  65. S. del Campo and R. Herrera, Warm inflation in the DGP brane-world model, Phys. Lett. B 653 (2007) 122 [arXiv:0708.1460] [INSPIRE].

    ADS  Google Scholar 

  66. L.M. Hall and H.V. Peiris, Cosmological constraints on dissipative models of inflation, JCAP 01 (2008) 027 [arXiv:0709.2912] [INSPIRE].

    Article  ADS  Google Scholar 

  67. S. Mohanty and A. Nautiyal, Natural inflation at the GUT scale, Phys. Rev. D 78 (2008) 123515 [arXiv:0807.0317] [INSPIRE].

    ADS  Google Scholar 

  68. R. Herrera and M. Olivares, Warm-logamediate inflationary universe model, Int. J. Mod. Phys. D 21 (2012) 1250047 [arXiv:1205.2365] [INSPIRE].

    ADS  Google Scholar 

  69. M. Badziak and M. Olechowski, Volume modulus inflection point inflation and the gravitino mass problem, JCAP 02 (2009) 010 [arXiv:0810.4251] [INSPIRE].

    Article  ADS  Google Scholar 

  70. A. Berera and T.W. Kephart, The ubiquitous inflaton in string-inspired models, Phys. Rev. Lett. 83 (1999) 1084 [hep-ph/9904410] [INSPIRE].

    Article  ADS  Google Scholar 

  71. M. Bastero-Gil, A. Berera, J.B. Dent and T.W. Kephart, Towards realizing warm inflation in string theory, arXiv:0904.2195 [INSPIRE].

  72. Y.-F. Cai, J.B. Dent and D.A. Easson, Warm DBI inflation, Phys. Rev. D 83 (2011) 101301 [arXiv:1011.4074] [INSPIRE].

    ADS  Google Scholar 

  73. M. Bastero-Gil, A. Berera and J.G. Rosa, Warming up brane-antibrane inflation, Phys. Rev. D 84 (2011) 103503 [arXiv:1103.5623] [INSPIRE].

    ADS  Google Scholar 

  74. A.N. Taylor and A. Berera, Perturbation spectra in the warm inflationary scenario, Phys. Rev. D 62 (2000) 083517 [astro-ph/0006077] [INSPIRE].

    ADS  Google Scholar 

  75. L.M. Hall, I.G. Moss and A. Berera, Scalar perturbation spectra from warm inflation, Phys. Rev. D 69 (2004) 083525 [astro-ph/0305015] [INSPIRE].

    ADS  Google Scholar 

  76. S. Gupta, A. Berera, A.F. Heavens and S. Matarrese, Non-gaussian signatures in the cosmic background radiation from warm inflation, Phys. Rev. D 66 (2002) 043510 [astro-ph/0205152] [INSPIRE].

    ADS  Google Scholar 

  77. B. Chen, Y. Wang and W. Xue, Inflationary nongaussianity from thermal fluctuations, JCAP 05 (2008) 014 [arXiv:0712.2345] [INSPIRE].

    Article  ADS  Google Scholar 

  78. I.G. Moss and C. Xiong, Non-gaussianity in fluctuations from warm inflation, JCAP 04 (2007) 007 [astro-ph/0701302] [INSPIRE].

    Article  ADS  Google Scholar 

  79. I.G. Moss and T. Yeomans, Non-gaussianity in the strong regime of warm inflation, JCAP 08 (2011) 009 [arXiv:1102.2833] [INSPIRE].

    Article  ADS  Google Scholar 

  80. M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, Warm baryogenesis, Phys. Lett. B 712 (2012) 425 [arXiv:1110.3971] [INSPIRE].

    ADS  Google Scholar 

  81. A.N. Taylor and A.R. Liddle, Gravitino production in the warm inflationary scenario, Phys. Rev. D 64 (2001) 023513 [astro-ph/0011365] [INSPIRE].

    ADS  Google Scholar 

  82. J.C. Bueno Sanchez, M. Bastero-Gil, A. Berera, K. Dimopoulos and K. Kohri, The gravitino problem in supersymmetric warm inflation, JCAP 03 (2011) 020 [arXiv:1011.2398] [INSPIRE].

    Article  ADS  Google Scholar 

  83. S. Bartrum, A. Berera and J.G. Rosa, Gravitino cosmology in supersymmetric warm inflation, arXiv:1208.4276 [INSPIRE].

  84. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  85. R. Allahverdi and A. Mazumdar, Reheating in supersymmetric high scale inflation, Phys. Rev. D 76 (2007) 103526 [hep-ph/0603244] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Cerezo.

Additional information

ArXiv ePrint: 1210.7975

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerezo, R., Rosa, J.G. Warm inflection. J. High Energ. Phys. 2013, 24 (2013). https://doi.org/10.1007/JHEP01(2013)024

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)024

Keywords

Navigation