Skip to main content

Allgemeine Methoden und Ergebnisse der wellenmechanischen Vielelektronentheorie in Kristallgittern

  • Chapter
  • First Online:
Halbleiterprobleme

Part of the book series: Advances in Solid State Physics ((ASSP,volume HP1))

Abstract

The most general type of a wave function for an electron ensemble in a periodic lattice is developed and discussed in the paper. Approximate solutions may be built up either from Bloch functions or from atomic functions of the single electrons. The relations between these two representations are discussed for a number of cases and possible extensions are outlined. The principles of the energy term structure of electron ensembles in solids may be understood in this way as well as the limitations in the applicability of the approximations used. Some applications of the results to the theory of ferromagnetism and of ionic crystals are discussed. For further progress it seems necessary to develop a theory which takes into account the Coulomb correlation of the electrons in a more satisfactory way.

Mit 5 Abbildungen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Nach M. Born (Festschrift der Akademie der Wissenschaften zu Göttingen 1951) ist es allerdings keineswegs sicher, ob regelmäßige Strukturen die einzige Lösung des vorliegenden Problems darstellen.

    Google Scholar 

  2. H. Volz und H. Haken, ZS. f. Phys. Chemie 198 (1951), S. 61 (Schottky-Festschrift).

    Google Scholar 

  3. ZS. f. Phys. 52 (1929), S. 555.

    Google Scholar 

  4. W. V. Houston, Phys. Rev. 57 (1940), S. 184.

    Article  MathSciNet  ADS  Google Scholar 

  5. H. Volz, ZS. f. Phys. 138 (1954), S. 330.

    Article  ADS  MATH  Google Scholar 

  6. J. C. Slater, Phys. Rev. 81 (1951), S. 385.

    Article  ADS  MATH  Google Scholar 

  7. S. z. B. J. C. Slater, Rev. Mod. Phys. 25 (1953), S. 199.

    Article  ADS  MATH  Google Scholar 

  8. F. Bloch, ZS. f. Phys. 61 (1930), S. 206.

    Article  ADS  Google Scholar 

  9. Vgl. F. Keffer, H. Kaplan, Y. Yafet, Am. Journ. of Phys. 21 (1953), S. 250.

    Article  ADS  MATH  Google Scholar 

  10. J. C. Slater, Phys. Rev. 52 (1937), S. 198.

    Article  ADS  Google Scholar 

  11. J. C. Slater, Rev. Mod. Phys. 25 (1953), S. 199.

    Article  ADS  MATH  Google Scholar 

  12. J. C. Slater u. W. Shockley, Phys. Rev. 50 (1936), S. 754.

    Article  ADS  Google Scholar 

  13. J. C. Slater, Phys. Rev. 82 (1951), S. 538.

    Article  ADS  Google Scholar 

  14. E. Wigner u. F. Seitz, Phys. Rev. 43 (1933), S. 804; 46 (1934), S. 509; E. Wigner, Phys. Rev. 46 (1934), S. 1002; Trans. Faraday Soc. 34 (1938), S. 678.

    Article  ADS  MATH  Google Scholar 

  15. W. Heisenberg, ZS. f. Naturforschung 2a (1947), S. 185.

    ADS  Google Scholar 

  16. S. Tomonaga, Progr. Theor. Phys. 5 (1950), S. 544.

    Article  MathSciNet  ADS  Google Scholar 

  17. T. Nishijama, Progr. Theor. Phys. 6 (1951), S. 366.

    Article  ADS  Google Scholar 

  18. D. Bohm u. D. Pines, Phys. Rev. 85 (1951), S. 338.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1954 Friedr. Vieweg & Sohn

About this chapter

Cite this chapter

Volz, H. (1954). Allgemeine Methoden und Ergebnisse der wellenmechanischen Vielelektronentheorie in Kristallgittern. In: Halbleiterprobleme. Advances in Solid State Physics, vol HP1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0116861

Download citation

  • DOI: https://doi.org/10.1007/BFb0116861

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75295-0

  • Online ISBN: 978-3-540-75296-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics