Skip to main content

The modular architectonic principle of neural centers

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 98

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 98))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin LM, Webster WR (1971) Tonotopic organization in the medial geniculate body of the cat. Brain Res 26:402–405

    Article  PubMed  Google Scholar 

  • Braitenberg V, Atwood RP (1958) Morphological observations on the cerebellar cortex. J Comp Neurol 109:1–34

    Article  PubMed  Google Scholar 

  • Brand B, Dahl A-L, Mugnaini E (1976) The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscopic study. Exp Brain Res 26:39–58

    PubMed  Google Scholar 

  • Brodal A (1957) The reticular formation of the brain stem. Anatomical aspects and functional correlations. Boyd, Edinburgh

    Google Scholar 

  • Brodal A (1975) The “wiring patterns” of the brain: neuroanatomical experiences and their implications for general view of the organization of the brain. In: Worden FG, Swazey JP, Adelman G (eds) The neurosciences: paths of discovery. MIT Press, Cambridge, Mass, pp 123–240

    Google Scholar 

  • Brown AG, Rose PK, Snow PJ (1977) The morphology of hair follicle afferent fibre collaterals in the spinal cord of the cat. J Physiol (Lond) 272:779–797

    PubMed  Google Scholar 

  • Brown AG, Rose PK, Snow PJ (1978) Morphology and organization of axon collaterals from afferent fibres of slowly adapting type I units in cat spinal cord. J Physiol (Lond) 277:15–27

    PubMed  Google Scholar 

  • Brown AG, Fyffe REW, Noble R (1980) Projections from Pacinian corpuscles and rapidly adapting mechanoreceptors of glabrous skin to the cat's spinal cord. J Physiol (Lond) 307:385–400

    PubMed  Google Scholar 

  • Brown AG, Fyffe REW, Rose PK, Snow PJ (1981) Spinal cord collaterals from axons of type II slowly adapting units in the cat. J Physiol (Lond) 316:469–480

    PubMed  Google Scholar 

  • Campbell AW (1905) Histological studies on the localization of cerebral function. Cambridge University Press, Cambridge

    Google Scholar 

  • Colonnier ML (1966) The structural design of the neocortex. In: Eccles JC (ed) Brain and conscious experience. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9:268–287

    Article  PubMed  Google Scholar 

  • Dyatchkova LN, Hámori J (1967) Formation of cerebellar glomeruli of rat in ontogenesis. Electron microscopic study (in Russian). Arkh Anat Gistol Embriol 52:30–39

    PubMed  Google Scholar 

  • Eccles JC (1978) An instruction-selection hypothesis of cerebral learning. In: Buser P, Buser A (eds) Cerebral correlates of conscious experience. Elsevier, Amsterdam

    Google Scholar 

  • Eccles JC (1979) The human mystery. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eccles JC (1980) The human psyche. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eccles JC (1981) The modular operation of the cerebral neocortex considered as the material basis of mental events. Neuroscience 6:1939–1956

    Article  Google Scholar 

  • Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Edelman GM (1978) Group selection and phasic reentrant signaling: a theory of higher brain function. In: Schmitt FO (ed) The mindful brain. MIT Press, Cambridge, Mass, pp 51–100

    Google Scholar 

  • Gallatz K, Palkovits M, Szentágothai J (to be published) Nerve cell number in the human cerebral cortex.

    Google Scholar 

  • Gilbert ChD, Wiesel TN (1979) Morphology and intracortical projection of functionally characterized neurons in the cat visual cortex. Nature 280:120–125

    Article  PubMed  Google Scholar 

  • Globus A, Scheibel AB (1966) Loss of dendritic spines as an index of presynaptic terminal patterns. Nature 213:463

    Google Scholar 

  • Goldman PS, Nauta WJH (1977) Columnar distribution of corticocortical fibers in the frontal association, limbic and motor cortex of the developing Rhesus monkey. Brain Res 122:393–413

    Article  PubMed  Google Scholar 

  • Grant G, Landgren S, Silfvenius H (1975) Columnar distribution of U-fibres from the postcruciate cerebral projection area of the cat's group I-muscle afferents. Exp Brain Res 24:57–74

    Article  PubMed  Google Scholar 

  • Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433

    PubMed  Google Scholar 

  • Gray EG (1961) The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: light and electron microscope observations. J Anat 95:345–356

    PubMed  Google Scholar 

  • Hámori J (1974) Experimental study of the formation of interneuronal contacts (in Hungarian). MTA Biol Oszt Közl 17:59–102

    Google Scholar 

  • Hámori J (1981) Synaptic input to the axon hillock initial segment of inhibitory interneurons in the cerebellar cortex of the rat. Cell Tissue Res 217:553–562

    Article  PubMed  Google Scholar 

  • Hámori J, Dyatchkova LN (1964) Electron microscopic studies on developmental differentiation of ciliary ganglion synapses in the chick. Acta Biol Acad Sci Hung 15:213–230

    PubMed  Google Scholar 

  • Hámori J, Somogyi J (to be published) Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscopic study. Brain Res

    Google Scholar 

  • Holländer H (1970) The projection from the visual cortex to the lateral geniculate body (LGB). Exp Brain Res 10:219–235

    Article  PubMed  Google Scholar 

  • Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764

    Article  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat's striate cortex. J Physiol (Lond) 148:574–591

    PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol 146:421–450

    Article  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN, Stryker MP (1978) Anatomical demonstration of orientation columns in macaque monkey. J Comp Neurol 177:361–379

    Article  PubMed  Google Scholar 

  • Ito M, Hongo T, Yoshida M, Okada Y, Obata K (1974) Antidromic and trans-synaptic activation of Deiters' neurones induced from the spinal cord. Jpn J Physiol 14:638–658

    Google Scholar 

  • Jansen J, Brodal A (1958) Das Kleinhirn. In: Oksche A, Vollrath L (eds) Handbuch der mikroskopischen Anatomie des Menschen, vol 4, pt 8. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  • Jones EG (1975) Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J Comp Neurol 160:205–268

    Article  PubMed  Google Scholar 

  • Kievit J, Kuypers HGJM (1977) Organization of the thalamo-cortical connexions of the frontal lobe in the Rhesus monkey. Exp Brain Res 29:299–322

    Article  PubMed  Google Scholar 

  • Kirsche W, David H, Winkelmann E (1965) Elektronenmikroskopische Untersuchungen an synaptischen Formationen im Cortex cerebelli von Rattus rattus norvegicus, Berkenhoot. Z Mikrosk Anat Forsch 72:49–80

    Google Scholar 

  • Koerber HR, Brown PB (1980) Projection of two hindlimb cutaneous nerves to cat dorsal horn. J Neurophysiol 44:259–269

    PubMed  Google Scholar 

  • Krieg WS (1932) The hypothalamus of the albino rat. J Comp Neurol 55:208–223

    Article  Google Scholar 

  • Leontovich TA, Zhukova GP (1963) The specificity of the neuronal structure and topography of the reticular formation in the brain and spinal cord of carnivora. J Comp Neurol 121:347–380

    Article  PubMed  Google Scholar 

  • Light AR, Perl ER (1979) Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 186:133–150

    Article  PubMed  Google Scholar 

  • Llinás R (1982) General discussion: Radial connectivity in the cerebellar cortex: a novel view regarding the functional organization of the molecular layer. In: Palay S, Chan-Palay V (eds) The cerebellum — new vistas. Springer, Berlin Heidelberg New York, pp 189–194

    Google Scholar 

  • Lorento de Nó R (1938) The cerebral cortex: Architecture, intracortical connections and motor projections. In: Fulton JF (ed) Physiology of the nervous system. Oxford University Press, London, pp 291–321

    Google Scholar 

  • Lund JS (1973) Organization of neurons in the visual cortex area 17 of the monkey (Macaca mulatta). J Comp Neurol 147:455–496

    Article  PubMed  Google Scholar 

  • Majorossy K, Kiss A (1976) Specific patterns of neuron arrangement and of synaptic articulation in the medial geniculate body. Exp Brain Res 26:1–17

    PubMed  Google Scholar 

  • Majorossy K, Réthelyi M (1968) Synaptic architecture of the Medial-Geniculate-Body (Ventral Division). Exp Brain Res 6:306–323

    Article  PubMed  Google Scholar 

  • Makara GB, Palkovits M, Szentágothai J (1980) The endocrine hypothalamus and the hormonal response to stress. In: Selye H (ed) Selye's guide to stress research, vol 1. Van Nostrand Reinhold, New York, pp 280–337

    Google Scholar 

  • Marin-Padilla M (1970) Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study, II. The basket-pyramidal system. Brain Res 23:185–192

    Article  PubMed  Google Scholar 

  • Martin KAC, Somogyi P, Whitteridge D (1983) Physiological and morphological properties of identified basket cells in the cat's visual cortex. Exp Brain Res 50:193–200

    Article  PubMed  Google Scholar 

  • Millhouse OE (1979) A Golgi anatomy of the rodent hypothalamus. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, vol 1. Dekker, New York, pp 221–265

    Google Scholar 

  • Morest DK (1971) Dendrodendritic synapses of cells that have axons: The fine structure of the Golgi type II cell in the medial geniculate body of the cat. Z Anat Entwicklungsgesch 133:216–246

    Article  PubMed  Google Scholar 

  • Morgan C, Nadelhaft I, De Groat WC (1981) The distribution of visceral primary afferents from the pelvic nerve to Lissauer's tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol 201:415–440

    Article  PubMed  Google Scholar 

  • Morgane PJ, Panksepp J (1979) Anatomoy of the hypothalamus. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, vol 1. Dekker, New York

    Google Scholar 

  • Mountcastle VB (1957) Modalities and topographic properties of single neurons of cat's sensory cortex. J Neurophysiol 20:408–434

    PubMed  Google Scholar 

  • Mountcastle VB (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: Schmitt FO (ed) The mindful brain. MIT Press, Cambridge, Mass, pp 7–50

    Google Scholar 

  • O'Leary JL (1940) A structural analysis of the lateral geniculate nucleus of the cat. J Comp Neurol 73:405–430

    Article  Google Scholar 

  • Oscarsson O (1969) The sagittal organization of the cerebellar anterior lobe as revealed by the projection patterns of the climbing fiber system. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. AMA-ERF, Chicago, pp 525–537

    Google Scholar 

  • Oscarsson O (1973) Functional organization of spinocerebellar paths. In: Iggo A (ed) Somatosensory system. Springer, Berlin Heidelberg New York, pp 339–380 (Handbook of sensory physiology, vol 2)

    Google Scholar 

  • Oscarsson O (1979) Functional units of the cerebellum — sagittal zones and microzones. Trends in Neurosciences 2:143–145

    Article  Google Scholar 

  • Palkovits M, Záborszky L (1979) Neural connections of the hypothalamus. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, vol 1. Anatomy of the hypothalamus. Dekker, New York Basel, pp 379–509

    Google Scholar 

  • Palkovits M, Magyar P, Szentágothai J (1971) Quantitative histological analysis of the cerebellar cortex in the cat. III. Structural organization of the molecular layer. Brain Res 34:1–18

    Article  PubMed  Google Scholar 

  • Pellionisz A, Llinás R (1979) Brain modeling by tensor network theory and computer simulation. The cerebellum: distributed processor for predictive coordination. Neuroscience 4:323–348

    Article  PubMed  Google Scholar 

  • Pellionisz A, Szentágothai J (1974) Dynamic single unit simulation of a realistic cerebellar network model. II. Purkinje cell activity within the basic circuit and modified by inhibitory systems. Brain Res 68:19–40

    Article  PubMed  Google Scholar 

  • Peters A, Proskauer CC, Ribak CE (1972) Chandelier cells in rat visual cortex. J Comp Neurol 206:397–416

    Article  Google Scholar 

  • Polyakov GI (1953) On the fine structural characteristics of the human cerebral cortex and in interneuronal functional interaction (in Russian). Arkh Anat Gistol Embriol 30:48–60

    Google Scholar 

  • Popper KR, Eccles JC (1977) The self and its brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J Comp Neurol 141:283–312

    Article  PubMed  Google Scholar 

  • Ramón y Cajal S (1888) Estructura de los centros nerviosos de las aves. Rev Trim Histol Norm Pathol 1 and 2

    Google Scholar 

  • Ramón y Cajal S (1899) Estudio sobrala cortezza cerebral humana. Rev Trim Microscopia 4:1–63

    Google Scholar 

  • Ramón y Cajal S (1909) Histologie du système nerveux de l'homme et des vertébrés I. Maloine, Paris

    Google Scholar 

  • Ramón y Cajal S (1911) Histologie du système nerveux de l'homme et des vertébrés II. Maloine, Paris

    Google Scholar 

  • Ramón y Cajal S (1935) Die Neuronenlehre. In: Bumke O, Foerster O (eds) Handbuch der Neurologie I. Anatomie. Springer, Berlin, pp 887–994

    Google Scholar 

  • Ramón-Molines E, Nauta WJH (1966) The isodendritic core of the brain stem. J Comp Neurol 126:311–335

    Article  PubMed  Google Scholar 

  • Réthelyi M (1968) The Golgi architecture of Clarke's column. Acta Morph Acad Sci Hung 16:311–330

    Google Scholar 

  • Réthelyi M (1972) Cell and neuropil architecture of teh intermediolateral (sympathetic) nucleus of cat spinal cord. Brain Res 46:203–213

    Article  PubMed  Google Scholar 

  • Réthelyi M (1976) Central core in the spinal grey matter. Acta Morph Acad Sci Hung 24:64–70

    Google Scholar 

  • Réthelyi M (1977) Preterminal and terminal axon arborizations in the substantia gelatinosa of cat's spinal cord. J Comp Neurol 172:511–528

    Article  PubMed  Google Scholar 

  • Réthelyi M (1981) The modular construction of the neuropil in the substantia gelatinosa of the cat's spinal cord. A computer aided analysis of Golgi specimens. Acta Morph Acad Sci Hung 29:1–18

    Google Scholar 

  • Réthelyi M, Capowski JJ (1977) The terminal arborization pattern of primary afferent fibers in the substantia gelatinosa of the spinal cord in the cat. J Physiol (Paris) 73:269–277

    Google Scholar 

  • Réthelyi M, Fockter V (1982) The fiber architecture of the rat median eminence with some accidental observations on the significance of tanycyte processes. Acta Biol Acad Sci Hung 33:289–300

    PubMed  Google Scholar 

  • Réthelyi M, Szentágothai J (1969) The large synaptic complexes of the substantia gelatinosa. Exp Brain Res 7:258–274

    Article  PubMed  Google Scholar 

  • Réthelyi M, Trevino DL, Perl ER (1979) Distribution of primary afferent fibers within the sacrococcygeal dorsal horn: an autoradiographic study. J Comp Neurol 185:603–622

    Article  PubMed  Google Scholar 

  • Réthelyi M, Light AR, Perl ER (1982) Complexes formed by functionally defined primary afferent units with fine myelinated fibers. J Comp Neurol 207:381–393

    Article  PubMed  Google Scholar 

  • Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379

    Article  PubMed  Google Scholar 

  • Ribak CE (1978) Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase. J Neurocytol 7:461–479

    Article  PubMed  Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TPS (1974) Numbers of neurons through full depth of neocortex. J Anat 118:371

    Google Scholar 

  • Sanderson KJ, Bishop PO, Darian-Smith I (1971) The properties of the binocular fields of lateral geniculate nucleus. Exp Brain Res 13:178–207

    PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB (1958) Structural substrates for integrative patterns in the brain stem reticular core. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (eds) Reticular formation of the brain. Little Brown, Boston, Mass, pp 31–55

    Google Scholar 

  • Scheibel ME, Scheibel AB (1968) Terminal axon patterns in cat spinal cord. II. The dorsal horn. Brain Res 9:32–58

    Article  PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB (1969) Terminal patterns in cat spinal cord. III. Primary afferent collaterals. Brain Res 13:417–443

    Article  PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB (1970) Elementary processes in selected thalamic and cortical subsystems — the structural substrates. In: Schmitt FO (ed) The neurosciences second study program. The Fockefeller University Press, New York, pp 443–457

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    PubMed  Google Scholar 

  • Somogyi P (1977) A specific axo-axonal interneuron in the visual cortex of the rat. Brain Res 136:345–350

    Article  PubMed  Google Scholar 

  • Somogyi P (1978) The study of Golgi stained cells and of experimental degeneration under the electron microscope: A direct method for the identification in the visual cortex of three successive links in a neuron chain. Neuroscience 3:167–180

    Article  PubMed  Google Scholar 

  • Somogyi P (1979) An interneuron making synapses specifically on the axonal initial segment (AIS) of pyramidal cells in the cerebral cortex of the cat. J Physiol (Lond) 296:18–19

    Google Scholar 

  • Somogyi P, Cowey A (1981) Combined Golgi and electron microscopic study of the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J Comp Neurol 195:547–566

    Article  PubMed  Google Scholar 

  • Somogyi P, Cowey A, Halász N, Freund TF (1981) Vertical organization of neurons accumulating 3H-GABA in the visual cortex of the rhesus monkey. Nature 294:761–763

    Article  PubMed  Google Scholar 

  • Somogyi P, Freund T, Cowey A (1982) The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey. Neuroscience 7:2577–2608

    Article  PubMed  Google Scholar 

  • Somogyi P, Cowey A, Kisvárday ZF, Freund TF, Szentágothai J (1983) Retrograde transport of 3H-GABA reveals specific interlaminar connections in the striate cortex of monkey. Proc Natl Acad Sci USA 80:2385–2389

    PubMed  Google Scholar 

  • Somogyi P, Smith AD, Nunzi MG, Gorio A, Takagi H, Wu J-Y (to be published) Glutamate decarboxylase immunoreactive neurons in the hippocampus of the cat. Distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons. J Neuroscience

    Google Scholar 

  • Szentágothai J (1962) On the synaptology of the cerebral cortex (in Russian). In: Sarkissov SA (ed) Structure and function of the nervous system. Medgiz, Moscow, pp 6–14

    Google Scholar 

  • Szentágothai J (1963a) Ujabb adatok a synapsis funkcionális anatómiájához (New data on the functional anatomoy of synapses) (in Hungarian). Magy Tud Akad Biol Oszt Közl 6:217–227

    Google Scholar 

  • Szentágothai J (1963b) The structure of the synapse in the lateral geniculate body. Acta Anat (Basel) 55:166–185

    PubMed  Google Scholar 

  • Szentágothai J (1964a) Neuronal and synaptic arrangement in the substantia gelatinosa Rolandi. J Comp Neurol 122:219–239

    Article  PubMed  Google Scholar 

  • Szentágothai J (1964b) Propriospinal pathways and their synapses. In: Eccles JC, Schadé JP (eds) Progress in brain research, vol 11. Elsevier, Amsterdam, pp 155–177

    Google Scholar 

  • Szentágothai J (1964c) The parvicellular neurosecretory system. In: Bargmann W, Schadé JP (eds) Progress in brain research, vol 5. Elsevier, Amsterdam, pp 135–146

    Google Scholar 

  • Szentagothai J (1964d) The structure of the autonomic interneuronal synapse. Acta Neuroveg 26:338–359

    Article  Google Scholar 

  • Szentágothai J (1965a) The use of degeneration methods in the investigations of short neuronal connections. In: Singer M, Schadé JP (eds) Progress in brain research, vol 14. Elsevier, Amsterdam, pp 1–32

    Google Scholar 

  • Szentágothai J (1965b) Complex synapses. In: Bargmann W (ed) Aus der Werkstatt der Anatomen. Thieme, Stuttgart, pp 147–167

    Google Scholar 

  • Szentágothai J (1967a) Models of specific neuron arrays in thalamic relay nuclei. Acta Morph Acad Sci Hung 15:113–124

    Google Scholar 

  • Szentágothai J (1967b) The anatomy of complex integrative units in the nervous system. In: Lissak K (ed) Recent developments in neurobiology in Hungary, vol 1. Akad Kiadó, Budapest, pp 9–45

    Google Scholar 

  • Szentágothai J (1969) Architecture of the cerebral cortex. In: Japser HH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies. Little Bronw, Boston, pp 13–28

    Google Scholar 

  • Szentágothai J (1970a) Les circuits neuronaux de l'écorce cérébrale. Bull Mem Acad R Med Belg 10:475–492

    Google Scholar 

  • Szentágothai J (1970b) Glomerular synapses, complex synaptic arrangements and their operational significance. In: Schmitt FO (ed) The neurosciences, second study program. Rockefeller University Press, New York, pp 427–443

    Google Scholar 

  • Szentágothai J (1971) Some geometrical aspects of the neocortical neuropil. Acta Biol Acad Sci Hung 22:107–124

    Article  PubMed  Google Scholar 

  • Szentágothai J (1973a) Neuronal and synaptic architecture of the lateral geniculate nucleus. In: Jung R (ed) Central processing of visual information, B. Visual centers in the brain. Springer, Berlin Heidelberg New York, pp 141–176 (Handbook of sensory physiology, vol 7, pt 3)

    Google Scholar 

  • Szentágothai J (1973b) Synaptology of the visual cortex. In: Jung R (ed) Central processing of visual information, B. Visual centers in the brain. Springer, Berlin Heidelberg New York, pp 269–324 (Handbook of sensory physiology, vol 7, pt 3)

    Google Scholar 

  • Szentágothai J (1975) The “module concept” in cerebral cortex architecture. Brain Res 95:475–496

    Article  PubMed  Google Scholar 

  • Szentágothai J (1976) Die Neuronenschaltungen der Großhirnrinde. Verh Anat Ges 70:187–215

    PubMed  Google Scholar 

  • Szentágothai J (1978a) The neuron network of the cerebral cortex: a functional interpretation. The Ferrier Lecture 1977. Proc R Soc Lond [Biol] 201:219–248

    Google Scholar 

  • Szentágothai J (1978b) Specificity versus (quasi-) randomness in cortical connectivity. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 77–97

    Google Scholar 

  • Szentágothai J (1978c) The local neuronal apparatus of the cerebral cortex. In: Buser PA, Rougeul-Buser A (eds) Cerebral correlates of conscious experience. North Holland, Amsterdam New York Oxford, pp 131–138

    Google Scholar 

  • Szentágothai J (1979) Local neuron circuits of the neocortex. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, Mass, London, pp 399–415

    Google Scholar 

  • Szentágothai J (1981) Principles of neural organization. In: Szentágothai J, Palkovits M, Hámori J (eds) Advances in physiological sciences, vol 1. Regulatory functions of the CNS principles of motion and organization. Pergamon Press — Akadémiai Kiadó, Oxford Budapest, pp 1–16

    Google Scholar 

  • Szentágothai J, Albert Á (1955) The synaptology of Clarke's column. Acta Morph Acad Sci Hung 5:43–51

    Google Scholar 

  • Szentágothai J, Arbib MA (1974) Conceptual models of neural organization. Neurosci Res Program Bull 12:307–510

    Google Scholar 

  • Szentágothai J, Réthelyi M (1973) Cyto-and neuropil architecture of the spinal cord. In: Desmedt JE (ed) Human reflexes, pathophysiology of motor systems, methodology of human reflexes. New developments in electromyography and clinical neurophysiology, vol 3. Karger, Basel, pp 20–37

    Google Scholar 

  • Szentágothai J, Flerkó B, Mess B, Halász B (1962) The hypothalamic control of the anterior pituitary. Akad Kiadó, Budapest

    Google Scholar 

  • Szentágothai J, Hámori J, Tömböl T (1966) Degeneration and electron microscope analysis of the synaptic glomeruli in the lateral geniculate body. Exp Brain Res 2:283–301

    Article  PubMed  Google Scholar 

  • Szentágothai J, Flerkó B, Mess B, Halász B (1968) Hypothalamic control of the anterior pituitary, 3rd edn. Akad Kiado, Budapest

    Google Scholar 

  • Tello F (1904) Disposición macroscópica y estructura del cuerpo geniculado externo. Trab Lab Invest Biol Univ Madrid 3:39–62

    Google Scholar 

  • Tömböl T, Madarász M, Somogyi G, Hajdu F, Gerle J (1978) Quantitative histological studies on the lateral geniculate nucleus in the cat. IV. Numerical aspects of the transfer from retinal fibers to cortical relay. J Hirnforsch 19:203–212

    PubMed  Google Scholar 

  • Valverde F (1967) Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp Brain Res 3:337–352

    Article  PubMed  Google Scholar 

  • Van der Loos H (1976) Barreloids in mouse somatosensory thalamus. Neurosci Lett 2:1–6

    Article  Google Scholar 

  • Voogd J (1964) The cerebellum of the cat. Thesis. University of Leiden. Van Gorcum, Assen

    Google Scholar 

  • Voogd J (1969) The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. AMA-ERF, Chicago, pp 493–541

    Google Scholar 

  • Voogd J (1982) The olivocerebellar projection in the cat. In: Palay S, Chan-Palay V (eds) The cerebellum: new vistas. Springer, Berlin Heidelberg New York, pp 134–160

    Google Scholar 

  • Werner G (1970) The topology of the body representation in the somatic afferent pathway. In: Schmitt FO (ed) The neurosciences, second study program. Rockefeller University Press, New York, pp 605–617

    Google Scholar 

  • Wolff JR, Eins S, Holzgraefe M, Záborszky L (1981) The temporo-spatial course of degeneration after cutting corticocortical connections in adult rats. Cell Tissue Res 214:303–321

    Article  PubMed  Google Scholar 

  • Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28

    Article  PubMed  Google Scholar 

  • Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (S 1) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242

    Article  PubMed  Google Scholar 

  • Zhukova GP (1958) On the question of the neuronal architecture of the spinal cord (in Russian). Arkh Anat Gistol Embriol 35:43–51

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this chapter

Cite this chapter

Szentágothai, J. (1983). The modular architectonic principle of neural centers. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 98. Reviews of Physiology, Biochemistry and Pharmacology, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033866

Download citation

  • DOI: https://doi.org/10.1007/BFb0033866

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12817-5

  • Online ISBN: 978-3-540-38744-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics