Skip to main content
Log in

Are National Vitamin D Guidelines Sufficient to Maintain Adequate Blood Levels in Children?

  • Published:
Canadian Journal of Public Health Aims and scope Submit manuscript

Abstract

Background: Vitamin D insufficiency (defined as 25-hydroxyvitamin D [25(OH)D] concentrations <40 nmol/L) may be associated with subclinical adverse effects on bone mineralization. The current vitamin D status of children and adolescents in Canada has not been described. The purpose of this study was to describe the association between 25(OH)D serum concentration and dietary vitamin D intake, and other potential determinants of vitamin D status, among a sample of children and adolescents aged 2–16 years presenting to a pediatric emergency department in Edmonton, Alberta (latitude 52°N) at the end of winter.

Methods: In early April 2003, 90 patients between the ages of 2 and 16 years who presented to the pediatric emergency department in Edmonton volunteered to participate. All participants and/or parents or guardians completed questionnaires regarding potential risk factors for vitamin D insufficiency, detailed dietary assessments, and anthropometric measurements. Serum 25(OH)D concentrations were measured in 68 of 90 participants.

Results: The mean serum 25(OH)D concentration was 47.2 nmol/L (95% CI 43.8–50.8 nmol/L). 34% of participants had vitamin D insufficiency (<40 nmol/L) and 6% were deficient (<25 nmol/L). Boys and girls aged 9–16 years had a prevalence of insufficiency of 69% and 35% respectively, while boys and girls 2–8 years old had a prevalence of insufficiency of 22% and 8% respectively. Dietary vitamin D intake per kilogram body weight was the most important independent determinant of 25(OH)D concentration (r = 0.446, p<0.001). Vitamin D intake, age and male sex best predicted insufficiency. No subject was insufficient if they had an intake >0.45 mcg/kg/day.

Interpretation: Vitamin D insufficiency may be common among children and adolescents at the beginning of spring. The risk may be highest among older children because vitamin D intake does not adequately rise in proportion with increases in body mass. Further studies are needed to assess whether Canadian dietary vitamin D recommendations should be changed.

Résumé

Contexte: L’insuffisance en vitamine D (définie dans cette étude comme les concentrations de 25-hydroxyvitamine D [25(OH)D] inférieures à 40 nmol/L) peut être associée à des effets subcliniques indésirables sur la minéralisation osseuse. Comme le statut actuel en vitamine D des enfants et des adolescents au Canada n’a pas encore été décrit, nous avons cherché à déterminer l’association entre la concentration sérique en 25(OH)D et l’apport en vitamine D dans l’alimentation, ainsi que d’autres déterminants possibles du statut en vitamine D, au sein d’un échantillon d’enfants et d’adolescents de 2 à 16 ans s’étant présentés au service d’urgences pédiatriques d’Edmonton (Alberta) (latitude 52°N) à la fin de l’hiver.

Méthode: Quatre-vingt-dix patients âgés de 2 à 16 ans s’étant présentés au service d’urgences pédiatriques d’Edmonton au début d’avril 2003 ont participé bénévolement à l’étude. Tous les participants et/ou leurs parents ou tuteurs ont rempli des questionnaires portant sur les facteurs de risque d’insuffisance en vitamine D et se sont soumis à des évaluations approfondies de leur alimentation et à des mesures anthropométriques. Les concentrations sériques en 25(OH)D ont été mesurées chez 68 des 90 participants.

Résultats: La concentration sérique moyenne en 25(OH)D était de 47,2 nmol/L (IC de 95 % =43,8–50,8 nmol/L). Trente-quatre p. cent des participants avaient une insuffisance en vitamine D (<40 nmol/L), et 6 % étaient carencés (<25 nmol/L). Les garçons et les filles de 9 à 16 ans affichaient des taux d’insuffisance de 69 % et de 35 % respectivement, contre 22 % et 8 % respectivement pour les garçons et les filles de 2 à 8 ans. L’apport alimentaire en vitamine D par kilogramme de poids était le principal déterminant indépendant de la concentration en 25(OH)D (r=0,446, p<0,001). L’apport en vitamine D, l’âge et le sexe masculin étaient les meilleurs prédicteurs d’insuffisance. Aucun sujet ayant un apport supérieur à 0,45 mcg/kg/jour n’a été considéré comme présentant une insuffisance.

Interprétation: L’insuffisance en vitamine D pourrait être commune chez les enfants et les adolescents au début du printemps. Les enfants pourraient présenter le risque le plus élevé, car leur apport en vitamine D n’augmente pas suffisamment en proportion de la croissance de leur masse corporelle. D’autres études sont nécessaires pour déterminer s’il faut modifier les recommandations canadiennes concernant l’apport alimentaire en vitamine D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown AJ, Dusso A, Slatopolsky E. Vitamin D. Am J Physiol 1999;277(Renal Physiol 46):F157–F175.

    CAS  PubMed  Google Scholar 

  2. Lehtonen-Veromaa MKM, Mottonen TT, Nuotio IO, Irjala KMA, Leino AE, Viikari JSA. Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: A 3-year prospective study. Am J Clin Nutr 2002;76:1446–53.

    Article  CAS  Google Scholar 

  3. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocr Rev 2001;22:477–501.

    Article  CAS  Google Scholar 

  4. Sabatier JP, Guaydier-Souquieres G, Benmalek A, Marcelli C. Evolution of lumbar bone mineral content during adolescence and adulthood: A longitudinal study in 395 healthy females 10–24 years of age and 206 premenopausal women. Osteopor Int 1999;9:476–82.

    Article  CAS  Google Scholar 

  5. Javaid MK, Cooper C. Prenatal and childhood influences on osteoporosis. Best Pract Res Clin Endocrinol Metab 2002;16:349–67.

    Article  CAS  Google Scholar 

  6. Rucker D, Allan JA, Fick GH, Hanley DA. Vitamin D insufficiency in a population of healthy western Canadians. CMAJ 2002;166:1517–24.

    PubMed  PubMed Central  Google Scholar 

  7. Vieth R, Cole DE, Hawker GA, Trang HM, Rubin LA. Wintertime vitamin D insufficiency is common in young Canadian women, and their vitamin D intake does not prevent it. Eur J Clin Nutr 2001;55:1091–97.

    Article  CAS  Google Scholar 

  8. Zitterman A. Vitamin D in preventive medicine: Are we ignoring the evidence? Br J Nutr 2003;89:552–72.

    Article  Google Scholar 

  9. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes Food and Nutrition Board, Institute of Medicine. DRI: Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press, 1997. Available online at: http://books.nap.edu/html/dri_calcium (Accessed September 24, 2005).

    Google Scholar 

  10. Mahan LK, Escott-Stump S. Krause’s Food, Nutrition, & Diet Therapy, 10th ed. Toronto, ON: W.B. Saunders, 2000;1144–1145(Appendix 48).

    Google Scholar 

  11. Holick MF. The use and interpretation of assays for vitamin D and its metabolites. J Nutr 1990;120:1464–69.

    Article  CAS  Google Scholar 

  12. Ogden CL, Kuczmarski RJ, Flegal KM, Mei Z, Guo S, Wei R, et al. Centers for Disease Control and Prevention 2000 growth charts for the United States: Improvements to the 1977 National Center for Health Statistics version. Pediatrics 2002;109:45–60.

    Article  Google Scholar 

  13. Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: Exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab 1988;67:373–78.

    Article  CAS  Google Scholar 

  14. Anonymous. Ultraviolet light: A hazard to children. American Academy of Pediatrics. Committee on Environmental Health. Pediatrics 1999;104:328–33.

    Article  Google Scholar 

  15. Statistics Canada. Food consumption, 2002. Available online at www40.statcan.ca/101/cst01/famil102d.htm (Accessed September 25, 2005).

    Google Scholar 

  16. Harnack L, Stang J, Story M. Soft drink consumption among US children and adolescents: Nutritional consequences. J Am Diet Assoc 1999;99:436–41.

    Article  CAS  Google Scholar 

  17. Health Canada. Food and Drug Regulations. Division 3, 2002. Available online at www.hc-sc.gc.ca/fn-an/alt_formats/hpfb-dgpsa/pdf/legisla-tion/e_f-vtamns.pdf (Accessed September 24, 2005).

    Google Scholar 

  18. Outila TA, Karkkainen MUM, Lamberg-Allardt CJE. Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: Associations with forearm bone mineral density. Am J Clin Nutr 2001;74:206–10.

    Article  CAS  Google Scholar 

  19. Gordon CM, DePeter KC, Feldman HA, Grace E, Emans SJ. Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med 2004;158:531–37.

    Article  Google Scholar 

  20. Ala-Houhala M, Parviainen MT, Pyykko K, Visakorpi JK. Serum 25-hydroxyvitamin D levels in Finnish children aged 2 to 17 years. Acta Paediatr Scand 1984;73:232–36.

    Article  CAS  Google Scholar 

  21. Ginty F, Cavadini C, Michaud PA, Burckhardt P, Baumgartner M, Mishra GD, Barclay DV. Effects of usual nutrient intake and vitamin D status on markers of bone turnover in Swiss adolescents. Eur J Clin Nutr 2004;58:1257–65.

    Article  CAS  Google Scholar 

  22. Holick MF. Environmental factors that influence the cutaneous production of vitamin D. Am J Clin Nutr 1995;61:638S–645S.

    Article  CAS  Google Scholar 

  23. Issues in establishing vitamin D recommendations for infants and children. Am J Clin Nutr 2004;80:1759S–62S.

    Article  Google Scholar 

  24. Guillemant J, Cabrol S, Allemandou A, Peres G, Guillemant S. Vitamin D-dependent seasonal variation of PTH in growing male adolescents. Bone 1995;17:513–16.

    Article  CAS  Google Scholar 

  25. Livingstone MB, Robson PJ, Wallace JM. Issues in dietary intake assessment of children and adolescents. Br J Nutr 2004;92:S213–S222.

    Article  CAS  Google Scholar 

  26. Faulkner H, Hussein A, Foran M, Szijarto L. A survey of vitamin A and D contents of fortified fluid milk in Ontario. J Dairy Sci 2000;83:1210–16.

    Article  CAS  Google Scholar 

  27. Chen TC, Heath H, Holick MF. An update on the vitamin D content of fortified milk from the United States and Canada. N Engl J Med 1993;329:1507.

    Article  CAS  Google Scholar 

  28. Ransome K, Rusk J, Field C. A school milk promotion program increases milk consumption and improves the calcium and vitamin D intakes of elementary school students. Can J Diet Pract Res 1998;59:190–98.

    Google Scholar 

  29. Vieth R, Chan PCR, MacFarlane GD. Efficacy and safety of vitamin D3 intake exceeding the lowest observed adverse effect level. Am J Clin Nutr 2001;73:288–94.

    Article  CAS  Google Scholar 

  30. EURODIAB Substudy 2 Study Group. Vitamin D supplement in early childhood and risk for type I (insulin-dependent) diabetes mellitus. Diabetologia 1999;42:51–54.

    Article  Google Scholar 

  31. van der Mei IA, Ponsonby AL, Dwyer T, Blizzard L, Simmons R, Taylor BV, et al. Past exposure to sun, skin phenotype, and risk of multiple sclerosis: Case-control study. BMJ 2003;327:316.

    Article  Google Scholar 

  32. Boucher BJ. Inadequate vitamin D status: Does it contribute to the disorders comprising syndrome ‘X’? Br J Nutr 1998;79:315–27.

    Article  CAS  Google Scholar 

  33. Wilkinson RJ, Llewelyn M, Toosi Z, Patel P, Pasvol G, Lalvani A, et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis amongst Gujarati Asians in West London: A case-control study. Lancet 2000;355:618–21.

    Article  CAS  Google Scholar 

  34. Wayse V, Yousafzai A, Mogale K, Filteau S. Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 y. Eur J Clin Nutr 2004;58:563–67.

    Article  CAS  Google Scholar 

  35. Grant WB, Garland C. Evidence supporting the role of vitamin D in reducing the risk of cancer. J Intern Med 2002;252:178–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian B. Jones MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, D.E., Martz, P., Yeo, R. et al. Are National Vitamin D Guidelines Sufficient to Maintain Adequate Blood Levels in Children?. Can J Public Health 96, 443–449 (2005). https://doi.org/10.1007/BF03405185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03405185

MeSH terms

Navigation