Skip to main content
Log in

Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed, and a phase 2 clinical trial with the xanthine drug CPX is in progress. The protein coded by the principal CFTR mutation, ΔF508-CFTR, fails to traffic efficiently from the endoplasmic reticulum to the plasma membrane, and is the pathogenic basis for the missing cAMP-activated plasma membrane chloride channel. CPX acts by binding to the mutant ΔF508-CFTR and correcting the trafficking deficit. CPX also activates mutant CFTR channels. The comparative genomics of wild-type and mutant CFTR has not previously been studied. However, we have hypothesized that the gene expression patterns of human cells expressing mutant or wild-type CFTR might differ, and that a drug such as CPX might convert the mutant gene expression pattern into one more characteristic of wild-type CFTR. To the extent that this is true, a pharmacogenomic profile for such corrective drugs might be deduced that could simplify the process of drug discovery for CF.

Materials and Methods

To test this hypothesis we used cDNA microarrays to study global gene expression in human cells permanently transfected with either wild-type or mutant CFTR. We also tested the effects of CPX on global gene expression when incubated with cells expressing either mutant or wild-type CFTR.

Results

Wild-type and mutant ΔF508-CFTR induce distinct and differential changes in cDNA microarrays, significantly affecting up to 5% of the total genes in the array. CPX also induces substantial mutation-dependent and -independent changes in gene expression. Some of these changes involve movement of gene expression in mutant cells in a direction resembling expression in wild-type cells.

Conclusions

These data clearly demonstrate that cDNA array analysis of cystic fibrosis cells can yield useful pharmacogenomic information with significant relevance to both gene and pharmacological therapy. We suggest that this approach may provide a paradigm for genome-based surrogate endpoint testing of CF therapeutics prior to human administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bailey DS, Bondar A, Furness LM. (1998) Pharmacogenomics—it’s not just pharmacogenetics. Curr. Opin. Biotechnol 6: 595–601.

    Article  Google Scholar 

  2. Ferrari P. (1998) Pharmacogenomics: a new approach to individual therapy of hypertension? Curr. Opin. Nephrol. Hypertens. 7: 217–221.

    Article  CAS  PubMed  Google Scholar 

  3. Graever G, Shoemaker DD, Jones TW, et al. (1999) Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat. Genet. 3: 278–283.

    Article  CAS  Google Scholar 

  4. Welsh MJ, Tsui L-C, Boat TF, Beaudet AL. (1995) Cystic fibrosis. In: Scriver CL, Sly WS, Valle D (eds). The Metabolic and Molecular Bases of Inherited Diseases, 7th ed. McGraw-Hill, New York, pp. 3799–3876.

    Google Scholar 

  5. Collins FS. (1992) Cystic fibrosis molecular biology and therapeutic implications. Science 256: 774–779.

    Article  CAS  PubMed  Google Scholar 

  6. Drumm ML, Pope HA, Cliff WH, et al. (1990) Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell 62: 1227–1233.

    Article  CAS  PubMed  Google Scholar 

  7. Rubenstein RC, Egan ME, Zeitlin PL. (1997) In vitro pharmacologic restoration of CFTR-mediated chloride transport in sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR. J. Clin. Invest. 100: 2457–2465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pollard HB. (1997) Role of CPX in promoting trafficking and chloride channel activity of wildtype and mutant CFTR. Pediatr. Pulmonol. S14: 128–131.

    Google Scholar 

  9. Riordan JR, Rommens JM, Karem B-S, et al. (1989) Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 245: 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  10. Rommens JM, Iannuzzi MC, Karem B-S, et al. (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245: 1059–1065.

    Article  CAS  PubMed  Google Scholar 

  11. Karem B-S, Rommens JM, Buchanan JA, et al. (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245: 1073–1080.

    Article  Google Scholar 

  12. Tsui L-C. (1992) Mutations and sequence variations detected in the cystic fibrosis transmembrane conductance regulator (CFTR) gene: a report from the cystic fibrosis genetic analysis consortium. Hum. Mutat. 1: 197–203.

    Article  CAS  PubMed  Google Scholar 

  13. Tsui L-C. (1992) The spectrum of cystic fibrosis mutations. Trends Genet. 8: 392–398.

    Article  CAS  PubMed  Google Scholar 

  14. Schultz BD, Singh AK, Devor DC, Bridges RJ. (1999) Pharmacology of CFTR chloride channel activity. Physiol. Rev. 79: S109–S144.

    Article  CAS  PubMed  Google Scholar 

  15. Eidelman O, Guay-Broder C, van Galen PJM, et al. (1992) A1-adenosine antagonists activate chloride efflux from cystic fibrosis cells. Proc. Natl. Acad. Sci. (U.S.A.) 89: 5562–5566.

    Article  CAS  Google Scholar 

  16. Schweibert E, Gruenert D, Stanton B. (1992) G-proteins inhibit cAMP-activated chloride channels in normal and CF epithelia. Pediatr. Pulmonol. S8: 257.

    Google Scholar 

  17. Guay-Broder C, Jacobson KA, BarNoy S, et al. (1995) A1-receptor antagonist 8 cyclopentyl-1,3-dipropyl-xanthine (CPX) selectively activates chloride efflux from human epithelial and mouse fibroblast cell lines expressing the CFTR(ΔF508) mutation, but not the wild type CFTR. Biochemistry 34: 9079–9087.

    Article  CAS  PubMed  Google Scholar 

  18. Jacobson KA, Guay-Broder C, van Galen PJM et al. (1995) Stimulation of alkylxanthines of chloride efflux from CFPAC-1 cells does not involve A1-adenosine receptors. Biochemistry 34: 9088–9094.

    Article  CAS  PubMed  Google Scholar 

  19. Casavola V, Turner RJ, Guay-Broder C, Jacobson KA, Eidelman O, Pollard HB. (1995) CPX, a selective A1 adenosine receptor antagonist, regulates intracellular pH in cystic fibrosis cells. Am. J. Physiol. (Cell) 269: C226–233.

    Article  CAS  Google Scholar 

  20. Haws CM, Nepomuceno I, Krouse ME, et al. (1996) ΔF508-CFTR channels: kinetics, activation by forskolin, and potentiation by xanthines. Am. J. Physiol. 270: 1544–1555.

    Article  Google Scholar 

  21. Arispe N, Ma J, Jacobson KA, Pollard HB. (1998) Direct activation of cystic fibrosis transmembrane conductance regulator by 8-cyclopentyl-l,3-dipropylxanthine and 1,3-diallyl-8-cyclohexyl-xanthine. J. Biol. Chem. 273: 5724–5734.

    Article  Google Scholar 

  22. Cheng SH, Gregory RJ, Marshall J, et al. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63: 827–834.

    Article  CAS  PubMed  Google Scholar 

  23. Cohen BE, Lee G, Jacobson KA, et al. (1997) CPX (1,3-dipropyl-8-cyclopentyl xanthine) and other alkyl-xanthines differentially bind to the wild type and ΔF508 mutant first nucleotide binding fold (NBF-1) domains of the cystic fibrosis transmembrane conductance regulator (CFTR). Biochemistry 36: 6455–6461.

    Article  CAS  PubMed  Google Scholar 

  24. Stutts MJ, Canessa CM, Olsen JC, et al. (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science 269: 847–850.

    Article  CAS  PubMed  Google Scholar 

  25. Ismailov II, Awayda MS, Jovov B, et al. (1996) Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator. J. Biol Chem. 271: 4725–4732.

    Article  CAS  PubMed  Google Scholar 

  26. Schweibert EM, Benos DJ, Egan ME, Stutts MJ, Guggino WB. (1999) CFTR is a conductance regulator as well as a chloride channel. Physiol. Rev. 79: S145–S166.

    Article  Google Scholar 

  27. Jacobson KA. (1988) Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharmacol. Sci. 19: 184–191.

    Article  Google Scholar 

  28. Fulmer SB, Schweibert EM, Morales MM, Guggino WB, Cutting GR. (1995) Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents. Proc. Natl. Acad. Sci. U.S.A. 92: 6832–6836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neglia JP, FitzSimmons SC, Maisonneuve P, et al. (1995) The risk of cancer among patients with cystic fibrosis. Cystic Fibrosis and Cancer Study Group. N. Engl. J. Med. 332: 494–499.

    Article  CAS  PubMed  Google Scholar 

  30. Sheldon CD, Hodson ME, Carpenter LM, Swerdlow AJ. (1993) A cohort study of cystic fibrosis and malignancy. Br. J. Cancer 68: 1025–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chaun H, Paty B, Nakiela EM, Schmidt N, Holden JK, Melosky B. (1996) Colonic carcinoma in two adult cystic fibrosis patients. Can. J. Gastroenterol. 10: 440–442.

    Article  CAS  PubMed  Google Scholar 

  32. Neugut AI, Jacobson JS, Suh S, Mukherjee R, Arber N. (1998) The epidemiology of cancer of the small bowel. Cancer Epidemiol. Biomark. Prev. 7: 243–251.

    CAS  Google Scholar 

  33. Tsogalis GJ, Faber G, Dalldorf FG, Friedman KJ, Silverman LM, Yankaskas JR. (1994) Association of pancreatic adenocarcinoma, mild lung disease, and delta F508 mutation in a cystic fibrosis patient. Clin. Chem. 40: 1972–1974.

    Google Scholar 

  34. Garcia FU, Galindo LM, Holsclaw DS, Jr. (1998) Breast abnormalities in patients with cystic fibrosis: previously unrecognised changes. Ann. Diagn. Pathol. 2: 281–285.

    Article  CAS  PubMed  Google Scholar 

  35. Southey MC, Batten L, Anderson CR, et al. (1998) CFTR deltaF508 carrier status, risk of breast cancer before the age of 40 and histological grading in a population-based case-control study. Int. J. Cancer 79: 487–489.

    Article  CAS  PubMed  Google Scholar 

  36. Padua RA, Warren N, Grimshaw D, et al. (1997) The cystic fibrosis delta F508 mutation and cancer. Hum. Mutat. 10: 45–48.

    Article  CAS  PubMed  Google Scholar 

  37. Gress TM, Muller-Pillasch F, Geng M, et al. (1996) A pancreatic cancer-specific expression profile. Oncogene 13: 1819–1830.

    PubMed  CAS  Google Scholar 

  38. Heller RA, Schena M, Chai A, et al. (1997) Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc. Natl. Acad. Sci. U.S.A. 94: 2150–2155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pappalardo PA, Bonner R, Krizman DB, Emmert-Buck MR, Liotta LA. (1998) Microdissection, microchip arrays, and molecular analysis of tumor cells (primary and metastases). Semin. Radiat. Oncol. 8: 217–223.

    Article  CAS  PubMed  Google Scholar 

  40. Pietu G, Alibert O, Guichard V, et al. (1996) Novel gene transcripts preferentially expressed in human muscles revealed by quantitative hybridization of a high density cDNA array. Genome Res. 6: 492–503.

    Article  CAS  PubMed  Google Scholar 

  41. Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. (1996) Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. U.S.A. 93: 10614–10619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Welford SM, Gregg J, Chen E, et al. (1998) Detection of differentially expressed genes in primary tumor tissues using representational differences analysis coupled to microarray hybridization. Nucl. Acids Res. 26: 3059–3065.

    Article  CAS  PubMed  Google Scholar 

  43. Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. (1999) High density synthetic oligonucleotide arrays. Nat. Genet. 21 (1 Suppl): 20–24.

    Article  CAS  PubMed  Google Scholar 

  44. Watson SJ, Akil H. (1999) Gene chips and arrays revealed: a primer on the power and their uses. Biol. Psychiatry 45: 533–543.

    Article  CAS  PubMed  Google Scholar 

  45. Alizadeh A, Eisen M, Botstein D, Brown PO, Staudt LM. (1998) Probing lymphocyte biology by genome-scale gene expression analysis. J. Clin. Immunol. 18: 373–379.

    Article  CAS  PubMed  Google Scholar 

  46. DeRisi J, Penland L, Brown PO, et al. (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14: 367–370.

    Article  Google Scholar 

  47. Ollila J, Vihinen M. (1998) Stimulation of B and T cells activates expression of transcription and differentiation factors. Biochem. Biophys. Res. Commun. 249: 475–480.

    Article  CAS  PubMed  Google Scholar 

  48. Shim C, Zhang W, Rhee CH, Lee JH. (1998) Profiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array. Clin. Cancer Res. 4: 3045–3050.

    PubMed  CAS  Google Scholar 

  49. Tao T, Xie J, Drumm ML, Zhao J, Davis PB, Ma J. (1996) Slow conversions among subconductance states of cystic fibrosis transmembrane conductance regulator chloride channel. Biophys. J. 70: 743–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299.

    Article  CAS  PubMed  Google Scholar 

  51. Gadsby DC, Nairn AC. (1999) Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol. Rev. 79: S77–S107.

    Article  CAS  PubMed  Google Scholar 

  52. Gao Z, Chen T, Weber MJ, Linden J. (1999) AaBBadenosine and P2Y2 receptors stimulate mitogen-activated protein kinase in human embryonic kidney-293 cells. J. Med. Chem. 274: 5972–5980.

    CAS  Google Scholar 

  53. Shimegi S. (1998) Mitogenic action of adenosine on osteoblast-like cells, MC3T3-E1. Calcif. Tissue Int. 62: 418–425.

    Article  CAS  PubMed  Google Scholar 

  54. Yuh IS, Sheffield LG. (1998) Adenosine stimulation of DNA synthesis in mammary epithelial cells. Proc. Soc. Exp. Biol. Med. 218: 341–348.

    Article  CAS  PubMed  Google Scholar 

  55. Lelievre V, Muller JM, Falcon J. (1998) Adenosine modulates cell proliferation in human colonic adenocarcinoma. I. Possible involvement of A1 receptor subtypes in HT29 cells. Eur. J. Pharmacol. 341: 289–297.

    Article  CAS  PubMed  Google Scholar 

  56. Bassen DE Jr, Eisen MB, Boguski MS. (1999) Gene expression informatics—it’s all in your mine. Nat. Genet. Suppl. 21: 51–55.

Download references

Acknowledgments

The authors thank Dr. A. Namboodiri, Dr. S. Galdwicky, Dr. L. Fossom, Dr. X. Leighton, and Ms. M. Glasman for substantive help and discussions, and acknowledge financial support from the NIH (RO1-DK53051), the Cystic Fibrosis Foundation, and the Juvenile Diabetes Foundation, International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey B. Pollard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, M., Eidelman, O. & Pollard, H.B. Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis. Mol Med 5, 753–767 (1999). https://doi.org/10.1007/BF03402099

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402099

Keywords

Navigation