Skip to main content

Advertisement

Log in

Methods for Prediction of Peptide Binding to MHC Molecules: A Comparative Study

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

A variety of methods for prediction of peptide binding to major histocompatibility complex (MHC) have been proposed. These methods are based on binding motifs, binding matrices, hidden Markov models (HMM), or artificial neural networks (ANN). There has been little prior work on the comparative analysis of these methods.

Materials and Methods

We performed a comparison of the performance of six methods applied to the prediction of two human MHC class I molecules, including binding matrices and motifs, ANNs, and HMMs.

Results

The selection of the optimal prediction method depends on the amount of available data (the number of peptides of known binding affinity to the MHC molecule of interest), the biases in the data set and the intended purpose of the prediction (screening of a single protein versus mass screening). When little or no peptide data are available, binding motifs are the most useful alternative to random guessing or use of a complete overlapping set of peptides for selection of candidate binders. As the number of known peptide binders increases, binding matrices and HMM become more useful predictors. ANN and HMM are the predictive methods of choice for MHC alleles with more than 100 known binding peptides.

Conclusion

The ability of bioinformatic methods to reliably predict MHC binding peptides, and thereby potential T-cell epitopes, has major implications for clinical immunology, particularly in the area of vaccine design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rammensee HG, Friede T, Stevanoviic S. (1995) MHC ligands and peptide motifs: 1st listing. Immunogenetics 41: 178–228.

    Article  CAS  PubMed  Google Scholar 

  2. Brusic V, Rudy G, Harrison LC. (1998) MHCPEP—a database of MHC-binding peptides: update 1997. Nucleic Acids Res. 26: 368–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang RF, Rosenberg SA. (1999) Human tumor antigens for cancer vaccine development. Immunol. Rev. 170: 85–100.

    Article  CAS  PubMed  Google Scholar 

  4. Wang R, Doolan DL, Le TP, et al. (1998) Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282: 467–480.

    Google Scholar 

  5. Berzofsky JA, Ahlers JD, Derby MA, et al. (1999) Approaches to improve engineered vaccines for human immunodeficiency virus and other viruses that cause chronic infections. Immunol. Rev. 170: 151–172.

    Article  CAS  PubMed  Google Scholar 

  6. Brusic V, Zeleznikow J. (1999) Computational binding assays of antigenic peptides. Letters in Peptide Science 6: 313–324.

    CAS  Google Scholar 

  7. Prilliman KR, Jackson KW, Lindsey M, et al. (1999) HLA-B15 peptide ligands are preferentially anchored at their C termini. J. Immunol. 162: 7277–7284.

    PubMed  CAS  Google Scholar 

  8. Parker KC, Bednarek MA, Coligan JE. (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide sidechains. J. Immunol. 152: 163–175.

    PubMed  CAS  Google Scholar 

  9. Hammer J, Bono E, Gallazzi F, et al. (1994) Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. J. Exp. Med. 180: 2353–2358.

    Article  CAS  PubMed  Google Scholar 

  10. Schönbach C, Ibe M, Shiga H, et al. (1995) Fine tuning of peptide binding to HLA-B*3501 molecules by nonanchor residues. J. Immunol. 154: 5951–5958.

    PubMed  Google Scholar 

  11. Mallios RR. (1999) Class II MHC quantitative binding motifs derived from a large molecular database with a versatile iterative stepwise discriminant analysis meta-algorithm. Bioinformatics 15: 432–439.

    Article  CAS  PubMed  Google Scholar 

  12. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50: 213–219. Available at URL: https://doi.org/www.uni-tuebingen.de/uni/kxi/.

    Article  CAS  PubMed  Google Scholar 

  13. Brusic V, Rudy G, Harrison LC. (1994) Prediction of MHC binding peptides using artificial neural networks. In Stonier RJ, Yu XS (eds). Complex Systems: Mechanism of Adaptation, Amsterdam/OHMSHA Tokyo: IOS Press; 253–260. Also published in Complexity International 2: 1995.

    Google Scholar 

  14. Adams HP, Koziol JA. (1995) Prediction of binding to MHC class I molecules. J. Immunol. Methods 185: 181–190.

    Article  CAS  PubMed  Google Scholar 

  15. Gulukota K, Sidney J, Sette A, Delisi C. (1997) Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J. Mol. Biol. 267: 1258–1267.

    Article  CAS  PubMed  Google Scholar 

  16. Brusic V, Rudy G, Honeyman M, Hammer J, Harrison LC. (1998) Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14: 121–130.

    Article  CAS  PubMed  Google Scholar 

  17. Mamitsuka H. (1998) Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins 33: 460–474.

    Article  CAS  PubMed  Google Scholar 

  18. Lim JS, Kim S, Lee HG, et al. (1996) Selection of peptides that bind to the HLA-A2.1 molecule by molecular modeling. Mol. Immunol. 33: 221–230.

    Article  CAS  PubMed  Google Scholar 

  19. Rognan D, Lauemoller SL, Holm A, Buus S, Tschinke V. (1999) Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins. J. Med. Chem. 42: 4650–4658.

    Article  CAS  PubMed  Google Scholar 

  20. Doytchinova IA, Flower DR. (2001) Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201. J. Med. Chem. 44: 3572–3581.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, C., Anderson, A. and DeLisi, C. (1998) Structural principles that govern the peptide-binding motifs of class I MHC molecules. J. Mol. Biol. 281, 929–947.

    Article  CAS  PubMed  Google Scholar 

  22. Davenport MP, Ho Shon IA, Hill AV. (1995) An empirical method for the prediction of T-cell epitopes. Immunogenetics 42: 392–397.

    Article  CAS  PubMed  Google Scholar 

  23. Godkin AJ, Davenport MP, Willis A, et al. (1998) Use of complete eluted peptide sequence data from HLA-DR and -DQ molecules to predict T cell epitopes, and the influence of the nonbinding terminal regions of ligands in epitope selection. J. Immunol. 161: 850–858.

    PubMed  CAS  Google Scholar 

  24. Manici S, Sturniolo T, Imro MA, et al. (1999) Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. J. Exp. Med. 189: 871–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vissers JL, De Vires JJ, Schreurs MW, et al. (1999) The renal cell carcinoma-associated antigen G250 encodes a human leukocyte antigen (HLA)-A2.1-restricted epitopes recognized by cytotoxic T lymphocytes. Cancer Res. 59: 5554–5559.

    PubMed  CAS  Google Scholar 

  26. Zarour HM, Kirkwood JM, Kierstead LS, et al. (2000) Melan-A/MART-1(51–73) represents an immunogenic HLA-DR4-restricted epitope recognized by melanoma-reactive CD4(+) T cells. Proc. Natl. Acad. Sci. U.S.A. 97: 400–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Honeyman MC, Brusic V, Stone NL, Harrison LC. (1998) Neural network-based prediction peptides binding major histocompatibility complex molecules. Nat. Biotechnol. 16: 966–969.

    Article  CAS  PubMed  Google Scholar 

  28. Khanna R, Burrows SR, Nicholls J, Poulsen LM. (1998) Identification of cytotoxic T cell epitopes within Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): evidence for HLA A2 supertype-restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T lymphocytes. Eur. J. Immunol. 28: 451–458.

    Article  CAS  PubMed  Google Scholar 

  29. Jin X, Roberts CG, Nixon DF, et al. (2000) Identification of subdominant cytotoxic T lymphocyte epitopes encoded by autologous HIV type 1 sequences, using dendritic cell stimulation and computer-driven algorithm. AIDS Res. Hum. Retroviruses. 16: 67–76.

    Article  CAS  PubMed  Google Scholar 

  30. De Lalla C, Sturniolo T, Abbruzzese L, et al. (1999) Cutting edge: identification of novel T cell epitopes in Lol p5a by computational prediction. J. Immunol. 163: 1725–1729.

    PubMed  Google Scholar 

  31. Deavin AJ, Auton TR, Greaney PJ. (1996) Statistical comparison of established T-cell epitope predictors against a large database of human and murine antigens. Mol. Immunol. 33: 145–155.

    Article  CAS  PubMed  Google Scholar 

  32. Borrás-Cuesta F, Golvano J, Garcia-Granero M, et al. (2000) Specific and general HLA-DR binding motifs: comparison of algorithms. Hum. Immunol. 61: 266–278.

    Article  PubMed  Google Scholar 

  33. Andersen MH, Tan L, Sondergaard I, et al. (2000) Poor correspondence between predicted and experimental binding of peptides to class I MHC molecules. Tissue Antigens, 55: 519–531.

    Article  CAS  PubMed  Google Scholar 

  34. Weiss SM, Kulikowski CA. (1990) Computer Systems that Learn. San Mateo, CA: Morgan Kaufman Publishers.

    Google Scholar 

  35. Beale R, Jackson T. (1990) Neural Computing: An Introduction. Bristol, UK: Adam Hilger.

    Google Scholar 

  36. Miyata Y. (1991) A User’s Guide to Planet Version 5.6. Boulder, CO: Computer Science Department, University of Colorado.

    Google Scholar 

  37. Rumelhart DE, Hinton E, Williams J. (1986) Learning internal representation by error propagation. In Rumelhart D, McClelland J, and the PDP Research Group (eds). Parallel Distributed Processing, Vol. 1. Cambridge, MA: MIT Press; 318–362.

    Google Scholar 

  38. Hughey R, Krogh A. (1996) Hidden Markov models for sequence analysis: extension and analysis of the basic method. Comput. Appl. Biosci. 12: 95–107.

    PubMed  CAS  Google Scholar 

  39. Krogh A, Brown M, Mian IS, et al. (1994) Hidden Markov models in computational biology. Applications to protein modeling. J. Mol. Biol. 235: 1501–1531.

    Article  CAS  PubMed  Google Scholar 

  40. Eddy SR. (1998) HMMer user’s guide (version 2.1.1). Profile hidden Markov models for biological sequence analysis. Available at URL: https://doi.org/http://hmmer.wustl.edu/hmmer-html/.

  41. Brusic V, Bucci K, Schonbach C, et al. (2001) Efficient discovery of immune response targets by cyclical refinement of QSAR models of peptide binding. J. Mol. Graph. Model. 19: 405–411, 467.

    Article  CAS  PubMed  Google Scholar 

  42. Swets JA. (1988) Measuring the accuracy of diagnostic systems. Science 240: 1285–1293.

    Article  CAS  PubMed  Google Scholar 

  43. Kast WM, Brandt RM, Sidney J, et al. (1994) Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J. Immunol. 152: 3904–3912.

    PubMed  CAS  Google Scholar 

  44. Madden DR, Garboczi DN, and Wiley DC. (1993) The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. Cell 75: 693–708.

    Article  CAS  PubMed  Google Scholar 

  45. Schirle M, Keilholz W, Weber B, et al. (2000) Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur. J. Immunol. 30: 2216–2225.

    Article  CAS  PubMed  Google Scholar 

  46. Altman JD, Moss PA, Goulder PJ, et al. (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 94–96.

    Article  CAS  PubMed  Google Scholar 

  47. Mathiassen S, Lauemoller SL, Ruhwald M, et al. (2001) Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity. Eur. J. Immunol. 31: 1239–1246.

    Article  CAS  PubMed  Google Scholar 

  48. Linnemann T, Tumenjargal S, Gellrich S, et al. (2001) Mimotopes for tumor-specific T lymphocytes in human cancer determined with combinatorial peptide libraries. Eur. J. Immunol. 31: 156–165.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

N.P. is supported by a grant from the Canberra Hospital Salaried Specialists Private Practice Fund.

Author information

Authors and Affiliations

Authors

Additional information

Contributed by R. Bucala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, K., Petrovsky, N., Schönbach, C. et al. Methods for Prediction of Peptide Binding to MHC Molecules: A Comparative Study. Mol Med 8, 137–148 (2002). https://doi.org/10.1007/BF03402006

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03402006

Keywords

Navigation