Skip to main content
Log in

Heme Oxygenase-2 Is Neuroprotective in Cerebral Ischemia

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 16 September 2013

This article has been updated

Abstract

Heme oxygenase (HO) is believed to be a potent antioxidant enzyme in the nervous system; it degrades heme from heme-containing proteins, giving rise to carbon monoxide, iron, and biliverdin, which is rapidly reduced to bilirubin. The first identified isoform of the enzyme, HO1, is an inducible heat-shock protein expressed in high levels in peripheral organs and barely detectable under normal conditions in the brain, whereas HO2 is constitutive and most highly concentrated in the brain. Interestingly, although HO2 is constitutively expressed, its activity can be modulated by phosphorylation. We demonstrated that bilirubin, formed from HO2, is neuroprotectant, as neurotoxicity is augmented in neuronal cultures from mice with targeted deletion of HO2 (HO2−/−) and reversed by low concentrations of bilirubin. We now show that neural damage following middle cerebral artery occlusion (MCAO) and reperfusion, a model of focal ischemia of vascular stroke, is substantially worsened in HO2−/− animals. By contrast, stroke damage is not significantly altered in HO1−/− mice, despite their greater debility. Neural damage following intracranial injections of N-methyl-d-aspartate (NMDA) is also accentuated in HO2−/− animals. These findings establish HO2 as an endogenous neuroprotective system in the brain whose pharmacologic manipulation may have therapeutic relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Maines MD. (1997) The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol Toxicol 37: 517–554.

    Article  CAS  PubMed  Google Scholar 

  2. Ewing JF, Maines MD. (1997) Histochemical localization of heme oxygenase-2 protein and mRNA expression in rat brain. Brain Res. Brain Res. Protoc. 1: 165–174.

    Article  CAS  PubMed  Google Scholar 

  3. Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH. (1993) Carbon monoxide: a putative neural messenger. Science 259: 381–384.

    Article  CAS  PubMed  Google Scholar 

  4. Zakhary R, Poss KD, Jaffrey SR, et al. (1997) Targeted gene deletion of heme oxygenase 2 reveals neural role for carbon monoxide. Proc. Natl Acad. Sci. U.S.A. 94: 14848–14853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doré S, Takahashi M, Ferris CD, et al. (1999) Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc. Natl. Acad. Sci. U.S.A. 96: 2445–2450.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235: 1043–1046.

    Article  CAS  PubMed  Google Scholar 

  7. Bélanger S, Lavoie JC, Chessex P. (1997) Influence of bilirubin on the antioxidant capacity of plasma in newborn infants. Biol Neonate 71: 233–238.

    Article  PubMed  Google Scholar 

  8. Hopkins PN, Wu LL, Hunt SC, et al. (1996) Higher serum bilirubin is associated with decreased risk for early familial coronary artery disease. Arterioscler. Thromb. Biol 16: 250–255.

    Article  CAS  Google Scholar 

  9. Poss KD, Tonegawa S. (1997) Heme oxygenase 1 is required for mammalian iron reutilization. Proc. Natl. Acad. Sci. U.S.A. 94: 10919–10924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poss KD, Thomas MJ, Ebralidze AK, O’Dell TJ, Tonegawa S. (1995) Hippocampal long-term potentiation is normal in heme oxygenase-2 mutant mice. Neuron 15: 867–873.

    Article  CAS  PubMed  Google Scholar 

  11. Burnett AL, Johns DG, Kriegsfeld LJ, et al. (1998) Ejaculatory abnormalities in mice with targeted disruption of the gene for heme oxygenase-2. Nat. Med. 4: 84–87.

    Article  CAS  PubMed  Google Scholar 

  12. Eliasson MJ, Sampei K, Mandir AS, et al. (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat. Med. 3: 1089–1095.

    Article  CAS  PubMed  Google Scholar 

  13. Jay TM, Lucignani G, Crane AM, Jehle J, Sokoloff L. (1988) Measurement of local cerebral blood flow with [14C]iodoantipyrine in the mouse. J. Cereb. Blood Flow Metab. 8: 121–129.

    Article  CAS  PubMed  Google Scholar 

  14. Ayata C, Ayata G, Hara H, et al. (1997) Mechanisms of reduced striatal NMDA excitotoxicity in type I nitric oxide synthase knock-out mice. J. Neurosci. 17: 6908–6917.

    Article  CAS  PubMed  Google Scholar 

  15. Schaeren-Wiemers N, Gerfin-Moser A. (1993) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100: 431–440.

    Article  CAS  PubMed  Google Scholar 

  16. Nimura T, Weinstein PR, Massa SM, Panter S, Sharp FR. (1996) Heme oxygenase-1 (HO-1) protein induction in rat brain following focal ischemia. Brain Res. Mol. Brain Res. 37: 201–208.

    Article  CAS  PubMed  Google Scholar 

  17. Takeda A, Onodera H, Sugimoto A, et al. (1994) Increased expression of heme oxygenase mRNA in rat brain following transient forebrain ischemia. Brain Res. 666: 120–124.

    Article  CAS  PubMed  Google Scholar 

  18. Koistinaho J, Miettinen S, Keinanen R, et al. (1996) Long-term induction of haem oxygenase-1 (HSP-32) in astrocytes and microglia following transient focal brain ischaemia in the rat. Eur. J. Neurosci. 8: 2265–2272.

    Article  CAS  PubMed  Google Scholar 

  19. Geddes JW, Pettigrew LC, Holtz ML, Craddock SD, Maines MD. (1996) Permanent focal and transient global cerebral ischemia increase glial and neuronal expression of heme oxygenase-1, but not heme oxygenase-2, protein in rat brain. Neurosci. Lett. 210: 205–208.

    Article  CAS  PubMed  Google Scholar 

  20. Yamaguchi T, Terakado M, Horio F, et al. (1996) Role of bilirubin as an antioxidant in an ischemia-reperfusion of rat liver and induction of heme oxygenase. Biochem. Biophys. Res. Commun. 223: 129–135.

    Article  CAS  PubMed  Google Scholar 

  21. Smith DR, Striplin CD, Geller AM, et al. (1998) Behavioural assessment of mice lacking D1A dopamine receptors. Neuroscience 86: 135–146.

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi M, Doré S, Ferris CD, Sawa A, Borjigin J, Thinakaran G, Sisodia SS, Snyder SH. (1998) Heme oxygenases interact with amyloid precursor protein family members. Soc. Neurosci. Abstr. 24: 204.

    Google Scholar 

  23. Ferris CD, Jaffrey SR, Sawa A, et al. (1999) Heme oxygenase-I prevents cell death by regulating cellular iron levels. Nat. Cell Biol 1: 152–157.

    Article  CAS  PubMed  Google Scholar 

  24. Smith A, Alam J, Escriba PV, Morgan WT. (1993) Regulation of heme oxygenase and metallothionein gene expression by the heme analogs, cobalt-, and tin-protoporphyrin. J. Biol. Chem. 268: 7365–7371.

    PubMed  CAS  Google Scholar 

  25. Huang KP, Huang FL, Mahoney CW, Chen KH. (1991) Protein kinase C subtypes and their respective roles. Prog. Brain Res. 89: 143–155.

    Article  CAS  PubMed  Google Scholar 

  26. Minetti M, Mallozzi C, Di Stasi AM, Pietraforte D. (1998) Bilirubin is an effective antioxidant of peroxynitrite-mediated protein oxidation in human blood plasma. Arch. Biochem. Biophys. 352: 165–174.

    Article  CAS  PubMed  Google Scholar 

  27. Wu TW, Wu J, Li RK, Mickle D, Carey D. (1991) Albumin-bound bilirubins protect human ventricular myocytes against oxyradical damage. Biochem. Cell Biol. 69: 683–688.

    Article  CAS  PubMed  Google Scholar 

  28. Ewing JF, Haber SN, Maines MD. (1992) Normal and heat-induced patterns of expression of heme oxygenase-1 (HSP32) in rat brain: hyperthermia causes rapid induction of mRNA and protein. J. Neurochem. 58: 1140–1149.

    Article  CAS  PubMed  Google Scholar 

  29. Schwertner HA, Jackson WG, Tolan G. (1994) Association of low serum concentration of bilirubin with increased risk of coronary artery disease. Clin. Chem. 40: 18–23.

    PubMed  CAS  Google Scholar 

  30. Gopinathan V, Miller NJ, Milner AD, Rice-Evans CA. (1994) Bilirubin and ascorbate antioxidant activity in neonatal plasma. FEBS Lett. 349: 197–200.

    Article  CAS  PubMed  Google Scholar 

  31. Hegyi T, Goldie E, Hiatt M. (1994) The protective role of bilirubin in oxygen-radical diseases of the preterm infant. J. Perinatol 14: 296–300.

    PubMed  CAS  Google Scholar 

  32. Heyman E, Ohlsson A, Girschek P. (1989) Retinopathy of prematurity and bilirubin. N. Engl J. Med. 320: 256.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by USPHS grants DA00266 (S. H. S.), NS20020 (R. J. T, R. C. K.) and Research Scientist Award DA00074 (S. H. S.). S. D. has a Centennial Fellowship from the Medical Research Council of Canada. We thank Drs. Kenneth D. Poss and Susumu Tonegawa for providing HO−/− mice and matched controls. We also thank Drs. Lee J. Martin, Mark E. Molliver, and Mary Ann Wilson for their help with the immunohistochemistry. We also thank Ms. Mi-Ryoung Song and Carrie Largent for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon H. Snyder.

Additional information

Communicated by S. Snyder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doré, S., Sampei, K., Goto, S. et al. Heme Oxygenase-2 Is Neuroprotective in Cerebral Ischemia. Mol Med 5, 656–663 (1999). https://doi.org/10.1007/BF03401984

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401984

Keywords

Navigation