Skip to main content
Log in

Presence of Diabetic Complications in Type 1 Diabetic Patients Correlates with Low Expression of Mononuclear Cell AGE-Receptor-1 and Elevated Serum AGE

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Receptors for advanced glycation endproducts (AGE-R) mediate AGE turnover, but can also trigger inflammatory genes that promote diabetic tissue injury and diabetic complications (DC). High AGE levels and reduced AGE-R sites in kidneys of NOD mice prone to type 1 diabetes (T1D) and to renal disease (RD) suggested that impaired AGE-R function may contribute to RD in these mice.

Materials and Methods

In this study, after confirming reduced AGE-R1 expression in NOD mouse peritoneal macrophages, we tested for differences in AGE-R1, -R2, and -R3 gene expression in 54 human subjects by RT-PCR and Western analysis. Fresh peripheral blood mononuclear cells (PBMN) were isolated from 36 persons: 18 T1D patients with severe RD (DC); 11 age-and DM-duration matched patients without DC (n-DC); and 7 normal volunteers (NL). EBV-transformed lymphoblasts were obtained from an additional 18 subjects (12 T1D patients, 6 with and 6 without DC, and 6 nondiabetics).

Results

AGE-R1 mRNA and protein of PBMN from n-DC patients were enhanced (p <.05 versus NL) in proportion to serum AGE levels (sAGE) (p <.005 versus NL). In contrast, PBMN from DC patients exhibited no up-regulation of AGE-R1 mRNA or protein, despite higher sAGE levels (p <.005 versus NL). A similar unresponsiveness in AGE-R1 gene expression was observed in EBV-transformed lymphoblasts from DC patients versus NL (p <.01), but not in n-DC (p = NS). AGE-R2 and -R3 mRNA and protein levels were enhanced in both T1D groups (DC > n-DC) (n-DC AGE-R3, p <.05, DC AGE-R3, p <.05) compared to NL. AGE-R2 mRNA levels correlated with sAGE levels (r =.61, p <.05), and with creatinine clearance (r = −.63, p <.05). No differences were noted in AGE-R2 and -R3 mRNA expression in cultured cells.

Conclusions

The consistent pattern of elevated serum AGE and low expression of AGE-R1 gene in macrophages from T1D mice (NOD), fresh PBMN and EBV-transformed cells from T1D patients with advanced DC suggests ineffective regulation of R1-mediated AGE turnover, possibly of genetic basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T. (1983) Diabetic nephropathy in type 1 (insulin-dependent) diabetics: an epidemiological study. Diabetologia 25: 496–501.

    Article  CAS  PubMed  Google Scholar 

  2. Krolewski AS, Canessa M, Warram JH, Laffel LM, Christlieb AR, Knowler WC, Rand LI. (1988) Predisposition to hypertension and susceptability to renal disease in insulin-dependent diabetes mellitus. N. Engl. J. Med. 318: 140–145.

    Article  CAS  PubMed  Google Scholar 

  3. Moczulski DK, Rogus JJ, Antonellis A, Warram JH, Krolewski AS. (1998) Major susceptibility locus for nephropathy in type 1 diabetes on chromosome 3q: results of novel discordant sib-pair analysis. Diabetes 47: 1164–1170.

    Article  CAS  PubMed  Google Scholar 

  4. Seaquist ER, Goetz FC, Rich S, Barbosa J. (1989) Familial clustering of diabetic kidney disease: evidence for genetic susceptibility to diabetic nephropathy. N. Engl. J. Med. 320: 1161–1165.

    Article  CAS  PubMed  Google Scholar 

  5. Ng LL, Davies JE, Siczhowski MM, Sweeney FP, Quinn PA, Krolewski B, Krolewski AS. (1994) Abnormal Na+/H+ antiporter phenotyope and turnover of immortalized lymphoblasts from type 1 diabetic patients with nephropathy. J. Clin. Invest. 93: 2750–2757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parving H-H. (1998). Renoprotection in diabetes: genetic and non-genetic risk factors and treatment. Diabetologia 41: 745–759.

    Article  CAS  PubMed  Google Scholar 

  7. Doria A, Warram JH, Krolewski A. (1994) Evidence for the role of the angiotensin I-converting enzyme gene. Diabetes 43: 690–695.

    Article  CAS  PubMed  Google Scholar 

  8. Ruderman NB, Williamson JR, Brownlee M. (1992) Glucose and diabetic vascular disease. FASEB J. 6: 2905–2914.

    Article  CAS  PubMed  Google Scholar 

  9. Brownlee M. (1995) Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med. 46: 223–234.

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt AM, Yan SD, Wautier J-L, Stern D. (1999) Activation of receptor for advanced glycation end products, a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ. Res. 84: 489–497.

    Article  CAS  PubMed  Google Scholar 

  11. Yang Z, Makita Z, Horii Y, Brunelle S, Cerami A, Sephajpal P, Suthanthiran M, Vlassara H. (1991) Two novel rat liver membrane proteins that bind advanced glycosylation enproducts: relationship to macrophage receptor for glucose-modified proteins. J. Exp. Med. 174: 515–524.

    Article  CAS  PubMed  Google Scholar 

  12. Li Y-M, Mitsuhashi T, Wojciehowicz D, et al. (1996) Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc. Natl. Acad. Sci. USA 93: 11047–11052.

    Article  CAS  PubMed  Google Scholar 

  13. Goh KC, Lim YP, Ong SH, Siak CB, Cao X, Tan YH, Guy GR. (1996) Identification of p90, a prominent tyrosine-phosphorylated protein in fibroblast growth factor stimulated cells, as 80K-H. J. Biol. Chem. 271: 5832–5838.

    Article  CAS  PubMed  Google Scholar 

  14. Sakai K, Hirai M, Minoshima S, Kidoh J, Fukuyama R, Shimizu N. (1989) Isolation of cDNAs encoding a substate for protein kinase C: nucleotide sequence and chromosomal mapping of the gene for a human 80K-H protein. Genomics 5: 309–315.

    Article  CAS  PubMed  Google Scholar 

  15. Stitt A, He C, Vlassara H. (1999) Characterization of the advanced glycation end-product receptor complex in human vascular endothelial cells. Biochem. Biophys. Res. Comm. 256: 549–556.

    Article  CAS  PubMed  Google Scholar 

  16. Vlassara H, Li YM, Imani F, Wojciechowicz D, Yang Z, Liu F, Cerami A. (1995) Identification of galectin-3 as a high affinity binding protein for advanced glycation enproducts (AGE): a new member of the AGE-receptor complex. Mol. Med. 1: 634–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kadrofske M, Openo KP, Wang JL. (1998) The human LGALS3 (galectin-3) gene: determination of the gene structure and functional characterization of the promoter. Arch. Biochem. Biophys. 349: 7–20.

    Article  CAS  PubMed  Google Scholar 

  18. Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H. (1997) Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am. J. Pathol. 150: 523–539.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Neeper M, Schmidt AM, Brett J, et al. (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 267: 14998–15004.

    PubMed  CAS  Google Scholar 

  20. Landers HM, Tauras JM, Ogiste JS. (1989) Isolation of cDNAs encoding a substate for protein kinase C: nucleotide sesquence and chromosomal mapping of the gene for a human 80K-H protein. J. Biol. Chem. 272: 17810–17814.

    Article  Google Scholar 

  21. Khoury J, Thomas C, Loike J, Hickman S, Cao L, Silverstein S. (1994) Macrophages adhere to glucose-modified basement membrane via their scavenger receptors. J. Biol. Chem. 269: 10197–10200.

    PubMed  Google Scholar 

  22. Suzuki H, Kurihara Y, Takeya M, et al. (1997) A role for macrophage scavenger receptors in artherosclerosis and susceptibility to infection. Nature 386: 292–296.

    Article  CAS  PubMed  Google Scholar 

  23. Yamagata T, Tsuru T, Momoi M, et al. (1997) Genome Organization of Human 48-kDa Oligosaccharryltranferase (DDOST). Genomics 45: 535–540.

    Article  CAS  PubMed  Google Scholar 

  24. Hudson BI, Stickland MH, Grant PJ. (1998) Identification of polymorphisms in the receptor for advanced glycation end products (RAGE) Gene, Diabetes 47: 1155–1157.

    Article  CAS  PubMed  Google Scholar 

  25. Vlassara H, Brownlee M, Cerami A. (1988). Specific macrophage receptor activity for advanced glycosylation end products inversely correlates with insulin levels in vivo. Diabetes 37: 456–461.

    Article  CAS  PubMed  Google Scholar 

  26. Stitt AW, He C, Friedman S, et al. (1997) Elevated AGE-modified ApoB in sera of euglycemic, normolipidemic patients with atherosclerosis: relationship to tissue AGEs. Mol. Med. 3: 617–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sano H, Higashi T, Matsumoto K, et al. (1998) Insulin enhances macrophage scavenger receptor-mediated endocytic uptake of advanced glycation end products. J. Biol. Chem. 273: 8630–8637.

    Article  CAS  PubMed  Google Scholar 

  28. Vlassara H, Moldawer L, Chan C. (1989) Macrophage/monocyte receptor for nonenzymatically glycosylated protein is up-regulated by cachectin/tumor necrosis factor. J. Clin. Invest. 84: 1813–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vlassara H, Bucala R, Striker L. (1994) Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab. Invest. 70: 138–151.

    PubMed  CAS  Google Scholar 

  30. Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thrope SR, Onorato J, Brownlee M. (1998) Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Invest. 101: 1142–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen MP, Ziyadeh FN, Lautenslager GT, Cohen JA, Shearman CW. (1999) Glycated albumin stimulation of PKC-beta activity is linked to increased collagen IV in mesangial cells. Am. J. Physiol. 276: F684–690.

    Article  CAS  PubMed  Google Scholar 

  32. Vlassara H. (1989) Advanced non-enymatic tissue glycosylation: mechanism implicated in the complications associated with aging. In: Clegg M, O’Brien S (eds) Molecular Biology of Aging. Alan R. Liss, Inc., New York, pp. 171–185.

    Google Scholar 

  33. Makita Z, Radoff S, Rayfield EJ, et al. (1991) Advanced Glycation Enproducts in patients with diabetic nephropathy. N. Engl. J. Med. 325: 836–842.

    Article  CAS  PubMed  Google Scholar 

  34. Makita Z, Bucala R, et al. (1994) Reactive glycosylation end-products in diabetic uraemia and treatment of renal failure. Lancet 343: 1519–1522.

    Article  CAS  PubMed  Google Scholar 

  35. Doi T, Hattori M, Agodoa LY, Sato T, Yoshida H, Striker LJ, Striker GE. (1990) Glomerular lesions in nonobese diabetic mouse: before and after the onset of hyperglycemia. Lab Invest. 63: 204–212.

    PubMed  CAS  Google Scholar 

  36. Yang CW, Hattori M, Vlassara H, et al. (1995) Overexpression of transforming growth factor-beta 1 mRNA is associated with up-regulation of glomerular tenascin and laminin gene expression in nonobese diabetic mice. J. Am. Soc. Nephrol. 5: 1610–1617.

    PubMed  CAS  Google Scholar 

  37. He C, Zheng F, Stitt A, Striker L, Masakazu H, Vlassara H. (2000) Differential expression of renal AGE-receptor genes in NOD mice; possible role in NOD diabetic renal disease. Kidney Int. (in press).

  38. He C, Stitt A, Striker L, Hatori M, Vlassara H. (1996) Low expression of AGE-receptor-1 in NOD mouse mesangial cells: possible link to diabetic nephropathy. J. Am. Soc. Nephrol. 7: 1871 (Abstr).

    Google Scholar 

  39. He C, Koschinsky T, Sabol J, Buenting C, Liu C, Vlassara H. (1997) Mononuclear (MN) cell AGE receptor-1 (AGE-R1) mRNA expression and its relationship to diabetic complications. Diabetes Supplement. 46: 8A (Abstr).

    Google Scholar 

  40. Leong LN, Davies JE, Siczowski M, Sweeney FP, Quinn PA, Krolewski B, Krolewski AS. (1994) Abnormal Na+/H+ antiporter phenotype and turnover of immortalized lymphoblasts from type 1 diabetes patients with nephropathy. J. Clin. Invest. 93: 2750–2757.

    Article  Google Scholar 

  41. Rogus JJ, Krolewski AS. (1996) Using discordant sib pairs to map loci for qualitative traits with high sibling recurrence risk. Am. J. Hum. Genet. 59: 1376–1381.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Beisswenger PJ, Makita Z, Curphey TJ, et al. (1995) Formation of immunochemical advanced glycosylation end products precedes and correlates with early manifestations of renal and retinal disease in diabetes. Diabetes 44: 824–829.

    Article  CAS  PubMed  Google Scholar 

  43. Makita Z, Vlassara H, Cerami A, Bucala B. (1992) Immunochemical detection of advanced glycosylation end products in vivo. J. Biol. Chem. 267: 5133–5138.

    PubMed  CAS  Google Scholar 

  44. Zyzak DV, Richardson JM, Thorpe SR, Baynes JW. (1995) Formation of reactive intermediates from Amadori compounds under physiological conditions. Arch. Biochem. Biophys. 316: 547–554.

    Article  CAS  PubMed  Google Scholar 

  45. Quinn M, Angelico MC, Warram JH, Krolewski AS. (1996) Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia 39: 940–945.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the National Institutes of Health (Grant #AG09453). We wish to thank Dr. Andrzej Krolewski for generously providing us with T1D EBV-transformed lymphoblasts and relevant epidemiologic data as well as with helpful advice. The editorial assistance of Ina Katz is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Vlassara MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Cj., Koschinsky, T., Buenting, C. et al. Presence of Diabetic Complications in Type 1 Diabetic Patients Correlates with Low Expression of Mononuclear Cell AGE-Receptor-1 and Elevated Serum AGE. Mol Med 7, 159–168 (2001). https://doi.org/10.1007/BF03401949

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401949

Keywords

Navigation