Skip to main content
Log in

The MDM2 Oncoprotein Binds Specifically to RNA through its RING Finger Domain

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The cellular mdm2 gene has transforming activity when overexpressed and is amplified in a variety of human tumors. At least part of the transforming ability of the MDM2 protein is due to binding and inactivating the p53 tumor suppressor protein. Additionally, this protein forms a complex in vivo with the L5 ribosomal protein and its associated 5S ribosomal RNA and may be part of a ribosomal complex.

Materials and Methods

A RNA homopolymer binding assay and a SELEX procedure have been used to characterize the RNA-binding activity of MDM2.

Results

The MDM2 protein binds efficiently to the homopolyribonucleotide poly(G) but not to other homopolyribonucleotides. This binding is independent of the interaction of MDM2 with the L5 protein, which occurs through the central acidic domain of MDM2. An RNA SELEX procedure was performed to identify specific RNA ligands that bind with high affinity to the human MDM2 (HDM2) protein. After 10 rounds of selection and amplification, a subset of RNA molecules that bound efficiently to HDM2 was isolated from a randomized pool. Sequencing of these selected ligands revealed that a small number of sequence motifs were selected. The specific RNA binding occurs through the RING finger domain of the protein. Furthermore, a single amino acid substitution in the RING finger domain, G446S, completely abolishes the specific RNA binding.

Conclusions

These observations, showing that MDM2 binds the L5/5S ribosomal ribonucleoprotein particle and can also bind to specific RNA sequences or structures, suggest a role for MDM2 in translational regulation in a cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fakharzadeh SS, Trusko SP, George DL. (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 10: 1565–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Finlay CA. (1993) The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol. Cell. Biol. 13: 301–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cordon-Cardo C, Latres E, Drobnjak M, et al. (1994) Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res. 54: 794–799.

    CAS  PubMed  Google Scholar 

  4. Ladanyi M, Cha C, Lewis R, Jhanwar SC, Huvos AG, Healy JH. (1993) Mdm-2 gene amplification in metastatic osteosarcoma. Cancer Res. 53: 16–18.

    CAS  PubMed  Google Scholar 

  5. Leach FS, Tokino T, Meitzer P, et al. (1993) p53 mutation and mdm2 amplification in human soft tissue sarcomas. Cancer Res. 53: 2231–2234.

    CAS  PubMed  Google Scholar 

  6. Oliner JD, Kinzler KW, Meitzer PS, George DL, Vogelstein B. (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80–83.

    Article  CAS  PubMed  Google Scholar 

  7. Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. (1993) Amplification and overexpression of the mdm2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 53: 2736–2739.

    CAS  PubMed  Google Scholar 

  8. Berberich S, Cole M. (1994) The mdm-2 oncogene is translocated and overexpressed in a murine plasmacytoma cell line expressing wild-type p53. Oncogene 9: 1469–1472.

    CAS  PubMed  Google Scholar 

  9. Bueso-Ramos CE, Yang Y, deLeon E, McCown P, Stass SA, Albitar M. (1993) The human mdm-2 oncogene is overexpressed in leukemias. Blood 82: 2617–2623.

    CAS  PubMed  Google Scholar 

  10. Landers JE, Haines DS, Strauss JF, George DL. (1994) Enhanced translation: A novel mechanism of mdm2 overexpression identified in human tumor cells. Oncogene 9: 2745–2750.

    CAS  PubMed  Google Scholar 

  11. Chen J, Marechal V, Levine AJ. (1993) Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13: 4107–4114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1240.

    Article  CAS  PubMed  Google Scholar 

  13. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. (1993) Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53. Nature 362: 857–860.

    Article  CAS  PubMed  Google Scholar 

  14. Jones SN, Roe AE, Donehower LA, Bradley A. (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378: 206–208.

    Article  CAS  PubMed  Google Scholar 

  15. Montes de Oca Luna R, Wagner DS, Lozano G. (1995) Rescue of early embyronic lethality in mdm2-deficient mice by deletion of p53. Nature 378: 203–206.

    Article  Google Scholar 

  16. Xiao Z, Chen J, Levine AJ, et al. (1995) Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375: 694–698.

    Article  CAS  PubMed  Google Scholar 

  17. Martin K, Trouche D, Hagemeier C, Sorensen S, La Thangue NB, Kouzarides T. (1995) Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 375: 691–694.

    Article  CAS  PubMed  Google Scholar 

  18. Marechal V, Elenbaas B, Piette J, Nicolas J, Levine AJ. (1994) The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol. Cell. Biol. 14: 7414–7420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen J, Lin J, Levine AJ. (1995) The regulation of p53-mediated transcriptional functions by mdm-2. Mol. Med. 1: 142–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boddy MN, Freemont PS. (1994) The p53-associated protein MDM2 contains a newly characterized zinc-binding domain called the RING finger. TIBS 19: 198–199.

    CAS  PubMed  Google Scholar 

  21. Barlow PN, Luisi B, Milner A, Elliott M, Everett R. (1994) Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy. J. Mol. Biol. 237: 201–211.

    Article  CAS  PubMed  Google Scholar 

  22. Borden KLB, Boddy MN, Lally J, et al. (1995) The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J. 14: 1532–1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lovering R, Hanson M, Borden KLB, et al. (1993) Identification and preliminary characterization of a protein motif related to the zinc finger. Proc. Natl. Acad. Sci. U.S.A. 90: 2112–2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Freemont PS. (1993) The RING finger. A novel protein sequence motif related to the zinc finger. Ann. N.Y. Acad. Sci. 684: 174–192.

    Article  CAS  PubMed  Google Scholar 

  25. Harlow E, Lane D. (1988) Antibodies: A Laboratory Manual Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  26. Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G. (1993) The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74: 291–298.

    Article  CAS  PubMed  Google Scholar 

  27. Dobbelstein M, Shenk T. (1995) In vitro selection of RNA ligands for the ribosomal L22 protein associated with Epstein-Barr virus-expressed RNA by using randomized and cDNA-derived RNA libraries. J. Virol 69: 8027–8034.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneider D, Gold L, Platt T. (1993) Selective enrichment of RNA species for tight binding to Escherichia coli rho factor. FASEB J. 7: 201–207.

    Article  CAS  PubMed  Google Scholar 

  29. Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG. (1993) hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62: 289–321.

    Article  CAS  PubMed  Google Scholar 

  30. Kiledjian M, Dreyfuss G. (1992) Primary structure and binding activity of the hnRNP U protein: Binding RNA through RGG box. EMBO J. 1: 2655–2664.

    Article  Google Scholar 

  31. Swanson MS, Dreyfuss G. (1988) Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNA-binding proteins. Mol. Cell. Biol. 3: 2237–2241.

    Article  Google Scholar 

  32. Fabre E, Boelens WC, Wimmer C, Mattaj IW, Hurt EC. (1994) Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif. Cell 78: 275–289.

    Article  CAS  PubMed  Google Scholar 

  33. Zuker M. (1994) Prediction of RNA secondary structure by energy minimization. Methods Mol. Biol. 25: 267–294.

    CAS  PubMed  Google Scholar 

  34. Tian Y, Adya N, Wagner S, Giam C, Green MR, Ellington AD. (1995). Dissecting protein:protein interactions between transcription factors with an RNA aptamer. RNA 1: 317–326.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Barak Y, Gottlieb E, Juven-Gershon T, Oren M. (1994) Regulation of mdm2 expression by p53: Alternative promoters produce transcripts with nonidentical translation potential. Genes Dev. 8: 1739–1749.

    Article  CAS  PubMed  Google Scholar 

  36. Tuerk C, MacDougal S, Gold L. (1992) RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. U.S.A. 89: 6988–6992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oberosler P, Hloch P, Ramsperger U, Stahl H. (1993) p53-catalyzed annealing of complementary single-stranded nucleic acids. EMBO J. 12: 2389–2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu L, Bayle JH, Elenbaas B, Pavletich NP, Levine AJ. (1995) Alternatively spliced forms in the carboxy-terminal domain of the p53 protein promote annealing of complementary single strands of nucleic acids. Mol. Cell. Biol. 15: 497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sands MS, Bogenhagen DF. (1991) The carboxy-terminal zinc fingers of TFIIIA interact with the tip of helix V of 5S RNA in the 7S ribonucleoprotein particle. Nucleic Acids Res. 19: 1791–1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Theunissen O, Rudt F, Guddat U, Mentzel H, Pieler T. (1992) RNA and DNA binding zinc fingers in Xenopus TFIIIA. Cell 71: 679–690.

    Article  CAS  PubMed  Google Scholar 

  41. Miki Y, Swensen J, Shattuck-Eidens D, et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66–71.

    Article  CAS  PubMed  Google Scholar 

  42. Goddard AD, Borrow J, Freemont PS, Solomon E. (1991) Characterization of a zinc-finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254: 1371–1374.

    Article  CAS  PubMed  Google Scholar 

  43. Crook NE, Clem RJ, Miller LK. (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 67: 2168–2174.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kelley RL, Solovyeva I, Lyman M, Richman R, Solovyev V, Kuroda MI. (1995) Expression of Msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophilia. Cell 81: 867–877.

    Article  CAS  PubMed  Google Scholar 

  45. Johnson RE, Henderson ST, Petes TD, Prakash S, Bankmann M, Pakash L. (1992) Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol. Cell. Biol. 12: 3807–3818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burd CG, Dreyfuss G. (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265: 615–621.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Jiandong Chen for providing the HDM2 deletion mutant expression plasmids and for helpful advice. We thank Maureen Murphy for her critical reading of this manuscript and Trisha Barney for help in preparing the manuscript. This work was supported by a grant from the National Cancer Institute to A. J. Levine and T. Shenk (CA41086). B. Elenbaas was supported by a fellowship from the New Jersey Commission on Cancer Research. M. Dobbelstein was supported by the Stipendium fur Infektionsbiologie of the German Cancer Research Center. J. Roth was supported by a fellowship of the Deutsche Forschungsgemeinschaft. T. Shenk is an American Cancer Society professor and an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elenbaas, B., Dobbelstein, M., Roth, J. et al. The MDM2 Oncoprotein Binds Specifically to RNA through its RING Finger Domain. Mol Med 2, 439–451 (1996). https://doi.org/10.1007/BF03401903

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401903

Navigation