Skip to main content
Log in

Regulation of Transcription Functions of the p53 Tumor Suppressor by the mdm-2 Oncogene

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Mdm-2, a zinc finger protein, negatively regulates the p53 tumor suppressor gene product by binding to it and preventing transcriptional activation (16).

Materials and Methods

Assays for p53 mediated transcription, repression and activation by mutant and wild-type p53 proteins were used to measure the ability of mdm-2 to block each activity.

Results

Mdm-2 was able to inhibit all three functions of the wild-type and mutant p53 activities; transcriptional activation by the wild-type protein, transcriptional activation by the mutant p53 protein, and repression by the wild-type protein.

Conclusions

The mdm protein binds to the amino terminal portion of the p53 protein and, in so doing, blocks the ability of p53 to interact with the transcriptional machinery of the cell (23). The mdm-2 protein binds to both leucine-tryptophan residues at amino acids 22 and 23, from the amino terminal end of the protein, and in so doing, prevents all p53 functions. The ability of a mutant p53 protein to transactivate a multidrug resistance-1 gene promoter is blocked by mdm-2 and the ability of the wild-type p53 protein to repress transcription of some genes is also blocked by the mdm-2 protein. Thus, all three functions of the p53 protein—transcriptional activation, repression and mutant protein activation—require the p53 amino terminal domain functions and are regulated by the mdm-2 protein in a cell. When mdm-2 is overproduced, resulting in a tumor or transformation of a cell, all of the p53 activities are inactivated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martinez J, Georgoff I, Martinez J, Levine AJ. (1991) Cellular localization and cell cycle regulation by a temperature sensitive p53 protein. Gene. Dev. 5: 151–159.

    Article  CAS  PubMed  Google Scholar 

  2. Lin D, Shields MT, Ullrich SJ, Appella E, Mercer WE. (1992) Growth arrest induced by wild-type p53 protein blocks cells prior to or near the restriction point in late G1 phase. Proc. Natl. Acad. Sci. U.S.A. 89: 9210–9214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB. (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. U.S.A. 89: 7491–7495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345–347.

    Article  CAS  PubMed  Google Scholar 

  5. Shaw P, Bovey R, Tardy S, Sahli R, Sordat B, Costa J. (1992) Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. U.S.A. 89: 4495–4499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kern S, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler K, Vogelstein B. (1992) Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256: 827–832.

    Article  CAS  PubMed  Google Scholar 

  7. Raycroft L, Schmidt JR, Yoas K, Lozano G. (1991) Analysis of p53 mutants for transcriptional activity. Mol. Cell. Biol. 11: 6067–6074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Unger T, Nau MM, Segal S, Minna JD. (1992) p53: a transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO J. 11: 1383–1390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ginsberg D, Mechtor F, Yaniv M, Chen M. (1991) Wild-type p53 can down-modulate the activity of various promoters. Proc. Natl. Acad. Sci. U.S.A. 88: 9979–9983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Santhanam U, Ray A, Sehgal PB. (1991) Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. Proc. Natl. Acad. Sci. U.S.A. 88: 7605–7609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seto E, Usheva A, Zambetti GP, et al. (1992) Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci. U.S.A. 89: 12028–12032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mack DH, Vartikar J, Pipas JM, Laimins LA. (1993) Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature 363: 281–283.

    Article  CAS  PubMed  Google Scholar 

  13. Chin KV, Ueda K, Pastan I, Gottesman MM. (1992) Modulation of activity of the promoter of the human MDR1 gene by ras and p53. Science 255: 459–462.

    Article  CAS  PubMed  Google Scholar 

  14. Wolf D, Harris N, Rotter V. (1984) Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell 38: 119–126.

    Article  CAS  PubMed  Google Scholar 

  15. Dittmer D, Pati S, Zambetti G, et al. (1993) p53 gain of function mutations. Nature Gen. 4: 42–46.

    Article  CAS  Google Scholar 

  16. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53 mediated transactivation. Cell 69: 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  17. Fakharzadeh SS, Trusko SP, George DL. (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 10: 1565–1569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Finlay CA. (1993) The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol. Cell. Biol. 13: 301–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oliner JD, Kinzler KW, Meitzer PS, George D, Vogelstein B. (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80–83.

    Article  CAS  PubMed  Google Scholar 

  20. Cordon-Cardo C, Latres E, Drobnjak M, et al. (1994) Molecular abnormalities of mdm-2 and p53 genes in adult soft tissue sarcomas. Cancer Res. 54: 794–799.

    PubMed  CAS  Google Scholar 

  21. Barak Y, Oren M. (1992) Enhanced binding of a 95 Kd protein to p53 in cells undergoing p53-mediated growth arrest. EMBO J. 11: 2115–2121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wu X, Bayle JH, Olson D, Levine AJ. (1993) The p53-mdm-2 autoregulatory feedback loop. Gene. Dev. 7: 1126–1132.

    Article  CAS  PubMed  Google Scholar 

  23. Chen J, Marechal V, Levine AJ. (1993) Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13: 4107–4114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oliner JD, Pietenpol JA, Thiagalinzam S, Gyures J, Kinzler KW, Vogelstein B. (1993) Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature (L) 362: 857–860.

    Article  CAS  Google Scholar 

  25. Olson D, Marechal V, Momand J, Chen J, Romocki C, Levine AJ. (1993) Identification and characterization of multiple mdm-2 proteins and mdm-2-p53 protein complexes. Oncogene 8: 2353–2360.

    PubMed  CAS  Google Scholar 

  26. Otto A, Deppert W. (1993) Upregulation of mdm-2 expression in Meth A tumor cells tolerating wild-type p53. Oncogene 8: 2591–2603.

    PubMed  CAS  Google Scholar 

  27. Baker SJ, Markowitz S, Fearon ER, Willson JKU, Vogelstein B. (1990) Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249: 912–915.

    Article  CAS  PubMed  Google Scholar 

  28. Masuda H, Miller C, Koeffler HP, Battifora H, Cline MJ. (1987) Rearrangement of the p53 gene in human osteogenic sarcomas. Proc. Natl. Acad. Sci. U.S.A. 84: 7716–7719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin J, Chen J, Elenbaas B, Levine AJ. (1994) Several hydrophobic amino acids in the p53 N-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55kd protein. Gene. Dev. 8: 1235–1246.

    Article  CAS  PubMed  Google Scholar 

  30. Soussi T, Caron de Fromentel C, May P. (1990) Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5: 945–952.

    PubMed  CAS  Google Scholar 

  31. Hinds PW, Finlay CA, Quartin RS, et al. (1990) Mutant p53 cDNAs from human colorectal carcinomas can cooperate with ras in transformation of primary rat cells: A comparison of the “hot spot” mutant phenotypes. Cell Growth & Diff. 1: 571–580.

    CAS  Google Scholar 

  32. Gorman CM, Merlino GT, Willingham MC, Pastan I, Howard BH. (1982) The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc. Natl. Acad. Sci. U.S.A. 79: 6777–6781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fields S, Jang SK. (1990) Presence of a potent transcription activating sequence in the p53 protein. Science 249: 1046–1049.

    Article  CAS  PubMed  Google Scholar 

  34. Raycroft L, Wu H, Lozano G. (1990) Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249: 1049–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kern SE, Kinzler KW, Bruskin A, et al. (1991) Identification of p53 as a sequence-specific DNA-binding protein. Science 252: 1708–1711.

    Article  CAS  PubMed  Google Scholar 

  36. Zambetti GP, Bargonetti J, Walker K, Prives C, Levine AJ. (1992) Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Gene. Dev. 6: 1143–1152.

    Article  CAS  PubMed  Google Scholar 

  37. El-Deiry WS, Tokino T, Velculescu VE, et al. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  38. Pietenpol JA, Takashi T, Thiagalingam S, El-Deiry WS, Kinzerl KW, Vogelstein B. (1994) Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. U.S.A. 91: 1998–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. El-Deiry WS, Harper JW, O’Connor PM, et al. (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54: 1169–1174.

    PubMed  CAS  Google Scholar 

  40. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704.

    Article  CAS  PubMed  Google Scholar 

  41. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge S J. (1993) The p21 Cdk-interacting protein Cipl is a potent inhibitor of Gl cyclin-dependent kinases. Cell 75: 805–816.

    Article  CAS  PubMed  Google Scholar 

  42. Shen Y, Shenk T. (in press) Relief of p53-mediated transcriptional repression by the adenovirus E1B–19kDa protein or the cellular Bcl-2 protein. Proc. Natl. Acad. Sci. U.S.A.

  43. Zastawny RL, Salvino R, Chen J, Benchimol S, Ling V. (1993) The core promoter region of the P-glycoprotein gene is sufficient to confer differential responsiveness to wild-type and mutant p53. Oncogene 8(6): 1529–1535.

    PubMed  CAS  Google Scholar 

  44. Yew PR, Liu X, Berk AJ. (1994) Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Gene. Dev. 8(2): 190–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

T. Shenk kindly provided us with the pSTi-CAT plasmid. We thank H. Lu, H. Bayle, X. Wu, B. Elenbaas, K. Walker, and N. Horihoshi for helpful discussions and advice. We are grateful for K. James for help in preparing this manuscript.

J. Chen is supported by a postdoctoral fellowship from Pfizer. A. J. Levine is supported by a National Institutes of Health grant.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Lin, J. & Levine, A.J. Regulation of Transcription Functions of the p53 Tumor Suppressor by the mdm-2 Oncogene. Mol Med 1, 142–152 (1995). https://doi.org/10.1007/BF03401562

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401562

Navigation