Skip to main content
Log in

Melanoma Differentiation Associated Gene-7 (mda-7): A Novel Anti-Tumor Gene for Cancer Gene Therapy

  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The mda-7 gene (melanoma differentiation associated gene-7) is a novel tumor suppressor gene. The anti-proliferative activity of MDA-7 has been previously reported. In this report, we analyze the antitumor efficacy of Ad-mda7 in a broad spectrum of cancer lines.

Materials and Methods

Ad-mda7-transduced cancer or normal cell lines were assayed for cell proliferation (tritiated thymidine incorporation assay, Alamar blue assay, and trypan-blue exclusion assay), apoptosis (TUNEL, and Annexin V staining visualized by fluorescent microscopy or FACs analysis), and cell cycle regulation (Propidium Iodide staining and FACs analysis).

Results

Ad-mda7 treatment of tumor cells resulted in growth inhibition and apoptosis in a temporal and dose-dependent manner. The anti-tumor effects were independent of the genomic status of p53, RB, p16, ras, bax, and caspase 3 in these cells. In addition, normal cell lines did not show inhibition of proliferation or apoptotic response to Ad-mda7. Moreover, Ad-mda7-transduced cancer cells secreted a soluble form of MDA-7 protein. Thus, Ad-mda7 may represent a novel gene-therapeutic agent for the treatment of a variety of cancers.

Conclusions

The potent and selective killing activity of Ad-mda7 in cancer cells but not in normal cells makes this vector a potential candidate for cancer gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kozarsky K, Wilson J. (1993) Gene therapy. Adenovirus vectors. Curr. Opin. Gene Dev. 3: 499–503.

    Article  CAS  Google Scholar 

  2. Swisher S, Roth J, Nemunaitis, Lawrence D, Kemp B, Carrasco C, Connors D, El-Naggar A, Fossella F, Glisson B, Hong W, Khuri F, Kurie J, Lee J, Lee J, Mack M, Merritt J, Nguyen D, Nesbitt J, Perez-Soler R, Pisters K, Putnam J Jr, Richli W, Savin M, Waugh M. (1999) Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J. Natl. Cancer Inst. 91: 763–771.

    Article  CAS  PubMed  Google Scholar 

  3. White E. (1996). Life, death and the pursuit of apoptosis. Genes Development 10: 1–15.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang H, Fisher P. (1993) Use of a sensitive and efficient subtraction hybridization protocol for the identification of genes differentially expressed during growth, differentiation in human melanoma cells. Mol. Cell Different. 1: 285–299.

    CAS  Google Scholar 

  5. Jiang H, Lin J, Su Z, Goldstein N, Fisher P. (1995) Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene. 11: 2477–2486.

    PubMed  CAS  Google Scholar 

  6. Jiang H, Su Z, Lin J, Goldstein N, Fisher, P. (1996) The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc. Natl. Acad. Sci. 93: 9160–9165.

    Article  CAS  PubMed  Google Scholar 

  7. Su Z, Madireddi M, Lin J, Young C, Kitada S, Reed J, Goldstein N, Fisher P. (1998) The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc. Natl. Acad. Sci. 95: 14400–14405.

    Article  CAS  PubMed  Google Scholar 

  8. Su Z, Madireddi M, Young C, Jiang H, Goldstein N, Fisher P. (2000) Melanoma differentiation associated gene-7 (Mda-7): a ubiquitous cancer growth suppressor gene. Cancer Gene Therapy (in press).

  9. Madireddi M, Su Z, Young C, Goldstein N, Fisher P. (2000) Mda-7, a novel melanoma differentiation associated gene with promise for cancer gene therapy. Cancer Gene Therapy: Past Achievements and Future Challenges (in press).

  10. Madireddi M, Su Z, Young C, Goldstein N, Fisher P. (2000) Mda-7, a novel melanoma differentiation associated gene with promise for cancer gene therapy. Adv. Exp. Med. Biol. 465: 239–61.

    Article  CAS  PubMed  Google Scholar 

  11. Nielsen L, Maneval D. (1998) p53 tumor suppressor gene therapy for cancer. Cancer Gene Therapy. 5: 52–63.

    PubMed  CAS  Google Scholar 

  12. Casey G, Lo-Hsueh M, Lopez M, Vogelstein B, Stanbridge E. (1991) Growth suppression of human breast cancer cells by the introduction of a wild-type p53 gene. Oncogene. 6: 1761–1797.

    Google Scholar 

  13. Graham F, Prevec. (1992) Adenovirus-based expression vectors and recombinant vaccines. Biotechnology. 20: 363–390.

    PubMed  CAS  Google Scholar 

  14. Jiang H, Lin J, Su Z, Collart F, Huberman E, Fisher P. (1994) Induction of differentiation in human promyelocytic HL-60 leukemia cells activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene. 9: 3397–3406.

    PubMed  CAS  Google Scholar 

  15. Jiang H, Lin J, Su Z, Kerbel R, Herlyn M, Weissman D, Welch D, Fisher P. (1995) The melanoma differentiation associated gene MDA-6, which encodes the cyclin-dependent kinase inhibitor p21, is differentially expressed during growth, differentiation and progression in human melanoma cells. Oncogene. 10: 1855–1864.

    PubMed  CAS  Google Scholar 

  16. Schneider C, King R, Philipson L. (1988) Genes specifically expressed at growth arrest of mammalian cells. Cell 54: 787–793.

    Article  CAS  PubMed  Google Scholar 

  17. Fornace A Jr, Alamo I Jr. Hollander M. (1988) DNA damage-inducible transcripts in mammalian cells. Proc. Natl. Acad. Sci. 85: 8800–8804.

    Article  CAS  PubMed  Google Scholar 

  18. Abdollahi A, Lord K, Hoffman-Liebermann B, Liebermann D. (1991) Sequence and expression of cDNA encoding MyD118: a novel myeloid differentiation primary response gene induced by multiple cytokines Oncogene. 6: 165–167.

    PubMed  CAS  Google Scholar 

  19. Mooslehner K, Muller U, Karls U, Hamann L, Harbers K. (1991) Structure and expression of a gene encoding a putative GTP-binding protein identified by provirus integration in a transgenic mouse strain. Mol. Cell Biol. 11: 886–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Del Sal G, Murphy M, Ruaro E, Lazarevic D, Levine A, Schneider C. (1995) Cyclin D1 and p21/waf1 are both involved in p53 growth suppression. Oncogene. 12: 177–185.

    Google Scholar 

  21. Wu G, El-Diery W. (1996) p53 and chemosensitivity. Nat. Med. 2: 255–256.

    Article  CAS  PubMed  Google Scholar 

  22. Claudio P, Howard C, Baldi A, De Luca A, Fu Y, Condorelli G, Sun Y, Colburn N, Calabretta B, Giordano A. (1994) p130/pRb2 has growth suppressive properties similar to yet distinctive from those of retinoblastoma family members pRb and p107. Cancer Res. 54: 5556–5565.

    PubMed  CAS  Google Scholar 

  23. Noda M, Kitayama H, Matsuzaki T, Sugimoto Y, Okayama H, Bassin R, Ikawa Y. (1988) Detection of genes with a potential for suppressing the transformed phenotype associated with activated ras genes. Proc Natl. Acad. Sci. 86: 162–166.

    Article  Google Scholar 

  24. Kitayama H, Sugimoto Y, Masuzaki T, Ikawa Y, Noda M. (1989) A ras-related gene with transformation suppressor activity. Cell 56: 77–84.

    Article  CAS  PubMed  Google Scholar 

  25. Reed J, Zha J, Aime-Sempe C, Takayama S, Wang, H. (1996) Structure-function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv. Exp. Med. Biol. 406: 99–112.

    Article  CAS  PubMed  Google Scholar 

  26. Soo C, Shaw W, Freymiller E, Longaker M, Bertolami C, Chie R, Tieu A, Ting K. (1999) Cutaneous rat wounds express c49a, a novel gene with homology to the human melanoma differentiation associated gene, MDA-7. J. Cell. Biochem. 74: 1–10.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang R, Tan Z, Liang P. (2000) Identification of a novel lig-and-receptor pair constitutively activated by ras oncogenes. J. Biol. Chem. 11: 24436–24443.

    Article  Google Scholar 

  28. Reed J. (1997) Double identity for proteins of the Bcl-2 family. Nature 387: 773–776.

    Article  CAS  PubMed  Google Scholar 

  29. Sedlak T, Oltvai Z, Yang E, Wang K, Boise L, Thompson C, Korysmeyer S. (1995) Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc. Natl. Acad. Sci. 92: 7834–7838.

    Article  CAS  PubMed  Google Scholar 

  30. Umekita Y, Hiipakka R, Liao S. (1997) Rat and human maspins: structures, metastatic suppressor activity and mutation in prostate cancer cells. Cancer Letter 126: 87–93.

    Article  Google Scholar 

  31. Mukherjee A, Kundu G. Mantile-Selvaggi G, Yuan C, Mandal A, Chattopadhyay S, Zheng F, Pattabiraman N, Zhang Z. (1999) Uteroglobin: a novel cytokine? Cell Mol. Life. Sci. 55: 771–87.

    Article  CAS  PubMed  Google Scholar 

  32. Vajkoczy P, Menger M, Goldbrunner R, Ge S, Fong T, Vollmar B, Schilling L, Ullrich A, Hirth K, Tonn J, Schmiedek P, Rempel S. (2000) Int. J. Cancer. 87: 261–268.

    Article  CAS  PubMed  Google Scholar 

  33. Melkonyan H, Chang W, Shapiro J, Mahadevappa M, Fitzpatrick P, Kiefer M, Tomei L, Umansky S. (1997) SARPs: a family of secreted apoptosis-related proteins. Proc. Natl. Acad. Sci. 94:13636–13641.

    Article  CAS  PubMed  Google Scholar 

  34. Saeki T, Mhashilkar A, Roth J, Chada S, Ramesh R. (2000) Tumor-suppressive effects by adenovirus-mediated mda-7 gene transfer in non-small cell lung cancer cell in vitro. Gene Ther. 7: 2051–2057.

    Article  CAS  PubMed  Google Scholar 

  35. Bieche I, Champeme M, Lidereau R. (1995) Loss and gain of distinct regions of chromosome 1q in primary breast cancer. Clin. Cancer Res. 1: 123–127.

    PubMed  CAS  Google Scholar 

  36. Gronwald J, Storkel S, Holtgreve-Grez H, Hadaczek P, Brinkschmidt C, Jauch A, Lubinski J, Cremer T. (1997) Comparison of DNA gains and losses in primary renal clear cell carcinomas and metastatic sites: importance of 1q and 3p copy number changes in metastatic events. Cancer Res. 57: 481–487.

    PubMed  CAS  Google Scholar 

  37. Petersen I, Bujard M, Petersen S, Wolf G, Goeze A, Schwendel A, Langreck H, Gellert K, Riechel M, Just K, Du Manoir S, Cremer T, Dietel M, Ried T. (1997) Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. Cancer Res. 57:(12): 2331–2335.

    PubMed  CAS  Google Scholar 

  38. Sukamoto K, Yoshimoto M, Kasumi M, Akiyama F, Sakamoto G, Nakamura Y, Emi M. (1999) Frequent multiplication of chromosome 1q in non-invasive and papillotubular carcinoma of the breast. Cancer Letter. 141: 21–27.

    Article  Google Scholar 

  39. Gallagher G, Dickensheets H, Eskdale J, Izotova L, Mirochnitchenko O, Peat J, Vazquez N, Pestka S, Donnelly R, Kotenko S. (2000) Cloning, expression and initial characterization of interleukin 19 (IL-19), a novel hoomologue of human IL-10 (IL-10). Genes and Immunity 1: 442–450.

    Article  CAS  PubMed  Google Scholar 

  40. Dumoutier L, Louahed J, Renauld J. (2000) Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J. Immunol. 164: 1814–9.

    Article  CAS  PubMed  Google Scholar 

  41. Knappe A, Hor S, Wittmann S, Fickenscher H. (2000) Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J. Virol. 74: 3881–3887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Introgen Therapeutics Inc., Houston, TX. and NCI grant R43 CA86587 to SC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Chada.

Additional information

Contributed by A. B. Pardee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mhashilkar, A.M., Schrock, R.D., Hindi, M. et al. Melanoma Differentiation Associated Gene-7 (mda-7): A Novel Anti-Tumor Gene for Cancer Gene Therapy. Mol Med 7, 271–282 (2001). https://doi.org/10.1007/BF03401847

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401847

Keywords

Navigation