Skip to main content

Advertisement

Log in

Bilirubin-induced ER stress contributes to the inflammatory response and apoptosis in neuronal cells

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Unconjugated bilirubin (UCB) in newborns may lead to bilirubin neurotoxicity. Few studies investigated the activation of endoplasmic reticulum stress (ER stress) by UCB. We performed an in vitro comparative study using undifferentiated SH-SY5Y, differentiated GI-ME-N neuronal cells and human U87 astrocytoma cells. ER stress and its contribution to inflammation and apoptosis induced by UCB were analyzed. Cytotoxicity, ER stress and inflammation were observed only in neuronal cells, despite intracellular UCB accumulation in all three cell types. UCB toxicity was enhanced in undifferentiated SH-SY5Y cells and correlated with a higher mRNA expression of pro-apoptotic CHOP. Mouse embryonic fibroblast knockout for CHOP and CHOP siRNA-silenced SH-SY5Y increased cells viability upon UCB exposure. In SH-SY5Y, ER stress inhibition by 4-phenylbutyric acid reduced UCB-induced apoptosis and decreased the cleaved forms of caspase-3 and PARP proteins. Reporter gene assay and PERK siRNA showed that IL-8 induction by UCB is transcriptionally regulated by NFкB and PERK signaling. These data suggest that ER stress has an important role in the UCB-induced inflammation and apoptosis, and that targeting ER stress may represent a potential therapeutic approach to decrease UCB-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Bakar A, Moore MR, Lang MA (2005) Evidence for induced microsomal bilirubin degradation by cytochrome P450 2A5. Biochem Pharmacol 70:1527–1535

    Article  CAS  PubMed  Google Scholar 

  • Ahlfors CE, Wennberg RP, Ostrow JD, Tiribelli C (2009) Unbound (free) bilirubin: improving the paradigm for evaluating neonatal jaundice. Clin Chem 55:1288–1299

    Article  CAS  PubMed  Google Scholar 

  • Barateiro A, Vaz AR, Silva SL, Fernandes A, Brites D (2012) ER stress, mitochondrial dysfunction and calpain/JNK activation are involved in oligodendrocyte precursor cell death by unconjugated bilirubin. Neuromolecular Med 14:285–302

    Article  CAS  PubMed  Google Scholar 

  • Brites D (2012) The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front Pharmacol 3:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Brito MA et al (2008) Unconjugated bilirubin differentially affects the redox status of neuronal and astroglial cells. Neurobiol Dis 29:30–40

    Article  CAS  PubMed  Google Scholar 

  • Calligaris R et al (2009) A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells. BMC Genom 10:543

    Article  Google Scholar 

  • Cesaratto L et al (2013) Specific inhibition of the redox activity of Ape1/Ref-1 by E3330 blocks Tnf-Α-induced activation of Il-8 production in liver cancer cell lines. PLoS One 8(8):e70909

  • Chaudhari N, Talwar P, Parimisetty A, Lefebvre d’Hellencourt C, Ravanan P (2014) A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 8:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Conlee JW, Shapiro SM (1997) Development of cerebellar hypoplasia in jaundiced Gunn rats: a quantitative light microscopic analysis. Acta Neuropathol 93:450–460

    Article  CAS  PubMed  Google Scholar 

  • Deng J et al (2004) Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 24:10161–10168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falcão AS, Fernandes A, Brito MA, Silva RFM, Brites D (2006) Bilirubin-induced immunostimulant effects and toxicity vary with neural cell type and maturation state. Acta Neuropathol 112:95–105

    Article  PubMed  Google Scholar 

  • Fernandes A, Falcão AS, Silva RFM, Brito MA, Brites D (2007) MAPKs are key players in mediating cytokine release and cell death induced by unconjugated bilirubin in cultured rat cortical astrocytes. Eur J Neurosci 25:1058–1068

    Article  PubMed  Google Scholar 

  • Gambaro SE, Robert MC, Tiribelli C, Gazzin S (2016) Role of brain cytochrome P450 mono-oxygenases in bilirubin oxidation-specific induction and activity. Arch Toxicol 90:279–290

    Article  CAS  PubMed  Google Scholar 

  • Garg AD et al (2012) ER stress-induced inflammation: does it aid or impede disease progression? Trends Mol Med 18:589–598

    Article  CAS  PubMed  Google Scholar 

  • Gazzin S et al (2012) Bilirubin accumulation and Cyp mRNA expression in selected brain regions of jaundiced Gunn rat pups. Pediatr Res 71:653–660

    Article  CAS  PubMed  Google Scholar 

  • Hamanaka RB, Bennett BS, Cullinan SB, Diehl JA (2005) PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol Biol Cell 16:5493–5501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen TW, Allen JW (1997) Oxidation of bilirubin by brain mitochondrial membranes–dependence on cell type and postnatal age. Biochem Mol Med 60:155–160

    Article  CAS  PubMed  Google Scholar 

  • Harding HP et al (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Hasnain SZ, Lourie R, Das I, Chen AC-H, McGuckin MA (2012) The interplay between endoplasmic reticulum stress and inflammation. Immunol Cell Biol 90:260–270

    Article  CAS  PubMed  Google Scholar 

  • Hitomi J et al (2004) Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci Lett 357:127–130

    Article  CAS  PubMed  Google Scholar 

  • Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamisako T et al (2000) Recent advances in bilirubin metabolism research: the molecular mechanism of hepatocyte bilirubin transport and its clinical relevance. J Gastroenterol 35:659–664

    Article  CAS  PubMed  Google Scholar 

  • Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    Article  CAS  PubMed  Google Scholar 

  • Kudo T et al (2007) A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 15:364–375

    Article  PubMed  Google Scholar 

  • Lai E, Teodoro T, Volchuk A (2007) Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology 22:193–201

    Article  CAS  PubMed  Google Scholar 

  • Lee AS (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35:373–381

    Article  CAS  PubMed  Google Scholar 

  • Lindholm D, Wootz H, Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13:385–392

    Article  CAS  PubMed  Google Scholar 

  • Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9:2277–2293

    Article  CAS  PubMed  Google Scholar 

  • Mimori S et al (2012) Protective effects of 4-phenylbutyrate derivatives on the neuronal cell death and endoplasmic reticulum stress. Biol Pharm Bull 35:84–90

    Article  CAS  PubMed  Google Scholar 

  • Müllebner A, Moldzio R, Redl H, Kozlov AV, Duvigneau JC (2015) Heme degradation by heme oxygenase protects mitochondria but induces ER stress via formed bilirubin. Biomolecules 5:679–701

    Article  PubMed  PubMed Central  Google Scholar 

  • Neve EPA, Ingelman-Sundberg M (2010) Cytochrome P450 proteins: retention and distribution from the endoplasmic reticulum. Curr Opin Drug Discov Devel 13:78–85

    CAS  PubMed  Google Scholar 

  • Notter MF, Kendig JW (1986) Differential sensitivity of neural cells to bilirubin toxicity. Exp Neurol 94:670–682

    Article  CAS  PubMed  Google Scholar 

  • O’Brien MA, Moravec RA, Riss TL (2001) Poly (ADP-ribose) polymerase cleavage monitored in situ in apoptotic cells. Biotechniques 30:886–891

    PubMed  Google Scholar 

  • Oakes GH, Bend JR (2010) Global changes in gene regulation demonstrate that unconjugated bilirubin is able to upregulate and activate select components of the endoplasmic reticulum stress response pathway. J Biochem Mol Toxicol 24:73–88

    CAS  PubMed  Google Scholar 

  • Ostrow JD, Pascolo L, Tiribelli C (2003) Reassessment of the unbound concentrations of unconjugated bilirubin in relation to neurotoxicity in vitro. Pediatr Res 54:98–104

    Article  CAS  PubMed  Google Scholar 

  • Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  CAS  PubMed  Google Scholar 

  • Paschen W, Mengesdorf T (2005) Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium 38:409–415

    Article  CAS  PubMed  Google Scholar 

  • Qaisiya M, Zabetta CDC, Bellarosa C, Tiribelli C (2014) Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway. Cell Signal 26:512–520

    Article  CAS  PubMed  Google Scholar 

  • Raciti M, Lotti LV, Valia S, Pulcinelli FM, Di Renzo L (2012) JNK2 is activated during ER stress and promotes cell survival. Cell Death Dis 3:e429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhine WD, Schmitter SP, Yu AC, Eng LF, Stevenson DK (1999) Bilirubin toxicity and differentiation of cultured astrocytes. J Perinatol Off J Calif Perinat Assoc 19:206–211

    Article  CAS  Google Scholar 

  • Roca L et al (2006) Factors affecting the binding of bilirubin to serum albumins: validation and application of the peroxidase method. Pediatr Res 60:724–728

    Article  CAS  PubMed  Google Scholar 

  • Ruiz A, Matute C, Alberdi E (2009) Endoplasmic reticulum Ca2 + release through ryanodine and IP3 receptors contributes to neuronal excitotoxicity. Cell Calcium 46:273–281

    Article  CAS  PubMed  Google Scholar 

  • Schönthal AH (2012) Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica (Cairo) 2012:857516

  • Schreck R, Meier B, Männel DN, Dröge W, Baeuerle PA (1992) Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med 175:1181–1194

    Article  CAS  PubMed  Google Scholar 

  • Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  Google Scholar 

  • Shapiro SM (2004) Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J Perinatol 25:54–59

    Article  Google Scholar 

  • Tam AB, Mercado EL, Hoffmann A, Niwa M (2012) ER stress activates NF-κB by integrating functions of Basal IKK activity, IRE1 and PERK. PLoS One 7:e45078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang KY, Chan D, Bateman JF, Cheah KSE (2010) In vivo cellular adaptation to ER stress: survival strategies with double-edged consequences. J Cell Sci 123:2145–2154

    Article  CAS  PubMed  Google Scholar 

  • Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C (2013) When ER stress reaches a dead end. Biochim Biophys Acta 1833:3507–3517

    Article  CAS  PubMed  Google Scholar 

  • Vaz AR et al (2011) Selective vulnerability of rat brain regions to unconjugated bilirubin. Mol Cell Neurosci 48:82–93

    Article  CAS  PubMed  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Watchko JF (2006) Kernicterus and the molecular mechanisms of bilirubin-induced CNS injury in newborns. Neuromolecular Med 8:513–529

    Article  CAS  PubMed  Google Scholar 

  • Watchko JF, Tiribelli C (2013) Bilirubin-induced neurologic damage–mechanisms and management approaches. N Engl J Med 369:2021–2030

    Article  CAS  PubMed  Google Scholar 

  • Yueh M-F, Chen S, Nguyen N, Tukey RH (2014) Developmental onset of bilirubin-induced neurotoxicity involves Toll-like receptor 2-dependent signaling in humanized UDP-glucuronosyltransferase1 mice. J Biol Chem 289:4699–4709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelenka J, Leníček M (2008) High sensitive method for quantitative determination of bilirubin in biological fluids and tissues. J Chromatogr B 867:37–42

    Article  CAS  Google Scholar 

  • Zhang B, Yang X, Gao X (2010) Taurine protects against bilirubin-induced neurotoxicity in vitro. Brain Res 1320:159–167

    Article  CAS  PubMed  Google Scholar 

  • Zinszner H et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors want to thank Melania Zanchetta for performing plasmid amplification. Authors also thank AREA Science Park for supporting Mohammed Qaisiya fellowship. This work was supported in part by and intramural grant from Fondazione Italiana Fegato, ONLUS and by grant RVO VFN64165 from the Czech Ministry of Health, and by grant KONTAKT LH15097 from the Czech Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Qaisiya.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qaisiya, M., Brischetto, C., Jašprová, J. et al. Bilirubin-induced ER stress contributes to the inflammatory response and apoptosis in neuronal cells. Arch Toxicol 91, 1847–1858 (2017). https://doi.org/10.1007/s00204-016-1835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1835-3

Keywords

Navigation