Skip to main content
Log in

A Repression-derepression Mechanism Regulating the Transcription of Human Immunodeficiency Virus Type 1 In Primary T Cells

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Despite some controversy regarding the preferential infection and replication of human immunodeficiency virus type 1 (HIV-1), it appears that primary T lymphocytes, in their quiescent state, are nonpermissive for viral expression and propagation. Massive activation of viral gene expression occurs only when the host lymphocyte is activated. These observations prompted us to investigate the transcriptional regulation of HIV-1 in resting or activated T cells that were isolated from cord blood or adult peripheral blood.

Materials and Methods

To this end, we employed cellular purification and phenotyping techniques, in vitro protein-DNA binding studies, functional transactivation assays using proteins isolated from cord blood or adult peripheral blood T lymphocytes, and transfection experiments in primary T cells.

Results

We showed that transcription from the HIV-1 long terminal repeat is repressed in resting naive T lymphocytes; whereas, mitogenically stimulated CD4+ cells form an activator that derepresses transcription. Negative and positive regulation act through a repressor-activator target sequence (RATS), which shares homology with the interleukin-2 (IL-2) purine-rich response element, through the adjacent binding site of the nuclear factor of activated T cells (NFAT), and weakly, through the κB region.

Conclusions

This regulation exerted by cellular transcription factors can account for several important features of HIV-1 expression in primary CD4+ cells. Tight repression in resting naive T helper cells may be a main cause of viral latency and transcriptional activation accounts for massive viral production in activated T lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berger EA, Murphy PM, Farber JM. (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 17: 657–700.

    Article  CAS  PubMed  Google Scholar 

  2. Haase AT. (1999) Population biology of HIV-1 infection: Viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu. Rev. Immunol. 17: 625–656.

    Article  CAS  PubMed  Google Scholar 

  3. Woods TC, Roberts BD, Butera ST, Folks TM. (1997) Loss of inducible virus in CD45RA naive cells after human immunodeficiency virus-1 entry accounts for preferential viral replication in CD45RO memory cells. Blood 89: 1635–1641.

    PubMed  CAS  Google Scholar 

  4. Fauci AS. (1993) Multifactorial nature of human immunodeficiency virus disease: Implications for therapy. Science 262: 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  5. Greene WC. (1990) Regulation of HIV-1 gene expression. Annu. Rev. Immunol. 8: 453–475.

    Article  CAS  PubMed  Google Scholar 

  6. Tong-Starksen SE, Luciw PA, Peterlin BM. (1987) Human immunodeficiency virus long terminal repeat responds to T-cell activation signals. Proc. Natl. Acad. Sci. U.S.A. 84: 6845–6849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cullen BR. (1991) Regulation of HIV-1 gene expression. FASEB J. 5: 2361–2368.

    Article  CAS  PubMed  Google Scholar 

  8. Gaynor R. (1992) Cellular transcription factors involved in the regulation of HIV-1 gene expression. AIDS 6: 347–363.

    Article  CAS  PubMed  Google Scholar 

  9. Hazeltine WA. (1991) Molecular Biology of the human immunodeficiency virus type 1. FASEB J. 5: 2349–2360.

    Article  Google Scholar 

  10. Mirkovitch J. (1997) The role of chromatin in HIV-1 transcriptional regulation. Immunobiol. 198: 279–290.

    Article  CAS  Google Scholar 

  11. Virelizier JL. (1989) Cellular activation and human immunodeficiency virus infection. Curr. Opin. Immunol. 2: 409–413.

    Article  PubMed  Google Scholar 

  12. Lodie TA, Reiner M, Coniglio S, Viglianti G, Fenton MJ. (1998) Both PU.1 and nuclear factor-kappa B mediate lipopolysaccharide-induced HIV-1 long terminal repeat transcription in macrophages. J. Immunol. 161: 268–276.

    PubMed  CAS  Google Scholar 

  13. Perkins ND, Edwards NL, Duckett CS, Agranoff AB, Schmid RM, Nabel GJ. (1993) A cooperative interaction between NFκB and Sp1 is required for HIV-1 enhancer activation. EMBO J. 12: 3551–1558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Roebuck KA, Gu DS, Kagnoff MF. (1996) Activation protein-1 cooperates with phorbol ester activation signals to increase HIV-1 expression. AIDS 10: 819–826.

    Article  CAS  PubMed  Google Scholar 

  15. Rosen CA, Sodroski JG, Hazeltine WA. (1985) The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HLV-III/LAV) long terminal repeat. Cell 41: 813–823.

    Article  CAS  PubMed  Google Scholar 

  16. Sikder SK, Mitra D, Laurence J. (1994) Identification of a novel cell-type and context specific enhancer within the negative regulatory element of the human immunodeficiency virus type 1 long terminal repeat. Arch. Virol. 137: 139–147.

    Article  CAS  PubMed  Google Scholar 

  17. Fujita T, Shibuya H, Ohashi T, Yamanishi K, Taniguchi T. (1988) Regulation of human interleukin-2 gene: Functional DNA sequences in the 5′ flanking region for the gene expression in activated T lymphocytes. Cell 46: 401–407.

    Article  Google Scholar 

  18. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. (1988) Identification of a putative regulator of early T cell activation genes. Science 241: 202–205.

    Article  CAS  PubMed  Google Scholar 

  19. Crabtree GR, Clipstone NA. (1994) Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu. Rev. Biochem. 63: 1045–1083.

    Article  CAS  PubMed  Google Scholar 

  20. Jain J, Loh C, Rao A. (1995) Transcriptional regulation of the IL-2 gene. Curr. Opin. Immunol. 7: 333–342.

    Article  CAS  PubMed  Google Scholar 

  21. Rao A. (1994) NF-ATp: A transcription factor required for the coordinate induction of several cytokine genes. Immunol. Today 15: 274–281.

    Article  CAS  PubMed  Google Scholar 

  22. Rao A, Luo C, Hogan PG. (1997) Transcription factors of the NFAT family: Regulation and function. Annu. Rev. Immunol. 15: 707–747.

    Article  CAS  PubMed  Google Scholar 

  23. Demarchi F, D’agaro P, Falaschi A, Giacca M. (1993) In vivo footprinting analysis of constitutive and inducible protein-DNA interactions at the long terminal repeat of human immunodeficiency virus type 1. J. Virol. 67: 7450–7460.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Copeland KF, Hendrix PJ, Haaksma AG, et al. (1995) Comparison of the response to T-cell activation by integrated HIV-1 and HTLV-1 LTR-lacZ vectors. Virology 209: 633–636.

    Article  CAS  PubMed  Google Scholar 

  25. Lu YC, Touzjian N, Stenzel M, Dorfman T, Sodroski JG, Hazeltine WA. (1991) The NF kappa B independent cisacting sequences in HIV-1 LTR responsive to T-cell activation. J. Acquir. Immune Defic. Syndr. 4: 173–177.

    PubMed  CAS  Google Scholar 

  26. West M, Mikovits J, Princkler G, et al. (1992) Characterization and purification of a novel transcriptional repressor from HeLa cell nuclear extracts recognizing the negative regulatory element region of human immunodeficiency virus-1 long terminal repeat. J. Biol. Chem. 267: 24948–24952.

    PubMed  CAS  Google Scholar 

  27. Gruters RA, Otta SA, Al BJ, et al. (1991) Non-mitogenic T cell activation signals are sufficient for induction of human immunodeficiency virus transcription. Eur. J. Immunol. 21: 167–172.

    Article  CAS  PubMed  Google Scholar 

  28. Markovitz DM, Hannibal MC, Smith MJ, Cossmann R, Nabel GJ. (1992) Activation of the human immunodeficiency virus type 1 enhancer is not dependent on NFAT-1. J. Virol. 66: 3961–3965.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Kinoshita S, Su L, Amano M, Timmermann LA, Kaneshima H, Nolan GP. (1997) The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. Immunity 6: 235–244.

    Article  CAS  PubMed  Google Scholar 

  30. Dawid IB, Sargent TD. (1988) Xenopus laevis in developmental and molecular biology. Science 240: 1443–1448.

    Article  CAS  PubMed  Google Scholar 

  31. Mous J, Stunnenberg H, Georgiev O, Birnstiel ML. (1985) Stimulation of sea urchin HB gene transcription by a chromatin associated protein fraction depends on gene sequences downstream of the transcription start site. Mol. Cell. Biol. 5: 2764–2769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu C, Wilson S, Walker B, et al. (1987) Purification and properties of Drosophila heat shock activator proteins. Science 238: 1247–1253.

    Article  CAS  PubMed  Google Scholar 

  33. Maxson R, Ito M, Balcells S, et al. (1988) Differential stimulation of the sea urchin early and late histone gene expresssion by a gastrula nuclear extract after injection into Xenopus oocytes. Mol. Cell. Biol. 8: 1236–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rungger D, Muster L, Boeck R, Nichols A. (1990) Tissue-specific trans-activation of the rabbit β-globin promoter in Xenopus oocytes. Differentiation 44: 8–17.

    Article  CAS  PubMed  Google Scholar 

  35. Xu L, Rungger D, Georgiev O, Seipel K, Schaffner W. (1994) Different potential of cellular and viral activators of transcription revealed in oocytes and early embryos of Xenopus laevis. Biol. Chem. Hoppe-Seyler 375: 105–112.

    Article  CAS  PubMed  Google Scholar 

  36. Zuo J, Rungger D, Voellmy R. (1995) Multiple layers of regulation of human heat shock transcription factor 1. Mol. Cell. Biol. 15: 4319–4330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mouzaki A, Weil R, Muster L, Rungger D. (1991) Silencing and trans-activation of the mouse IL-2 gene in Xenopus oocytes by proteins from resting, mitogen-induced and cyclosporin A-treated primary T-lymphocytes. EMBO J. 10: 1389–1406.

    Article  Google Scholar 

  38. Mouzaki A, Dai Y, Weil R, Rungger D. (1992) The immunosuppressive agents cyclosporin A and FK506 prevent normal derepression of the mouse IL-2 gene upon T-cellular induction. Cytokine 4: 151–160.

    Article  CAS  PubMed  Google Scholar 

  39. Mouzaki A, Zubler RH, Doucet A, Rungger D. (1992) Trans-active factors controlling the IL-2 gene in adult human T-cell subsets. Mediators of Inflammation 1: 33–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mouzaki A, Rungger D, Tucci A, Doucet A, Zubler RH. (1993) Occurrence of a silencer of the interleukin-2 gene in naive but not in memory resting T helper lymphocytes. Eur. J. Immunol. 23: 1469–1474.

    Article  CAS  PubMed  Google Scholar 

  41. Mouzaki A, Rungger D. (1994) Properties of transcription factors regulating interleukin 2 gene transcription through the NFAT binding site in untreated or drug-treated naive and memory T helper cells. Blood 84: 2612–2621.

    PubMed  CAS  Google Scholar 

  42. Mouzaki A, Rungger D. (1994) Interleukin 2 gene regulation at the Pud (NFAT) promoter element: The complex situation in primary T lymphocytes. Molec. Biol. Haematopoiesis 3: 475–486.

    Google Scholar 

  43. Gendelman HE, Phelps W, Feigenbaum L, et al. (1986) Trans-activation of the human immunodeficiency virus long terminal repeat sequence by DNA viruses. Proc. Natl. Acad. Sci. U.S.A. 83: 9759–9763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luckow B, Schütz G. (1987) CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 15: 5490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cochran MD, Weissmann C. (1984) Modular structure of the beta-globin and the TK promoter. EMBO J. 3: 2453–2459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Dente L, Cesareni G, Cortese R. (1983) pEMBL: a new family of single stranded plasmids. Nucleic Acids Res. 11: 1645–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Paliogianni F, Raptis A, Ahuja SS, Najjar SM, Boumpas DT. (1993) Negative transcriptional regulation of human interleukin 2 gene by glucocorticoids through interference with nuclear transcription factors AP-1 and NF-AT. J. Clin. Invest. 91: 1481–1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gorman CM, Moffat LF, Howard BH. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2: 1044–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Foecking MK, Hofstetter H. (1986) Powerful and versatile enhancer-promoter unit for mammalian expression vectors. Gene 45: 101–107.

    Article  CAS  PubMed  Google Scholar 

  50. Wen L, Hanvanich M, Werner-Favre C, Brouwers N, Perrin LH, Zubler RH. (1987) Limiting dilution assay for human B cells based on their activation by mutant EL4 thymoma cells: total and anti-malaria responder B cell frequencies. Eur. J. Immunol. 17: 887–896.

    Article  CAS  PubMed  Google Scholar 

  51. Novak TJ, Yoshimura FK, Rothenberg EV. (1992) In vitro transfection of fresh thymocytes and T cells shows subset-specific expression of viral promoters. Mol. Cell. Biol. 12: 1515–1527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mouzaki A, Serfling E, Zubler RH. (1995) Interleukin-2 promoter activity in Epstein-Barr virus-transfected B lymphocytes is controlled by nuclear factor κB. Eur. J. Immunol. 25: 2177–2182.

    Article  CAS  PubMed  Google Scholar 

  53. Schreiber E, Matthias P, Müller MM, Schaffner W. (1988) Identification of a novel lymphoid specific octamer binding protein (OTF-2B) by proteolytic clipping bandshift assay (PCB). EMBO J. 7: 4221–4229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Alcami J, Lain de Lera T, Folgueira L, et al. (1995) Absolute dependence on kappa B response elements for initiation and Tat-mediated amplification of HIV transcription in blood CD4 T lymphocytes. EMBO J. 14: 1552–1560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Harhaj E, Blaney J, Milhouse S, Sun S-C. (1996) Differential effects of iκB molecules on Tatmediated transactivation of HIV-1 LTR. Virology 216: 284–287.

    Article  CAS  PubMed  Google Scholar 

  56. Wright CM, Felber BK, Paskalis H, Pavlakis GN. (1986) Expression and characterization of the trans-activator of HTLV-III/LAV virus. Science 234: 988–992.

    Article  CAS  PubMed  Google Scholar 

  57. Bernstein MS, Tong-Starksen SE, Locksley RM. (1991) Activation of human monocyte-derived macrophages with Lipopolysaccharide decreases Human Immunodeficiency Virus replication in vitro at the level of gene expression. J. Clin. Invest. 88: 540–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hazan U, Thomas D, Alcami J, et al. (1990) Stimulation of a human T-cell clone with anti-CD3 or tumor necrosis factor induces NFκB translocation but not human immunodeficiency virus 1 enhancer-dependent transcription. Proc. Natl. Acad. Sci. U.S.A. 87: 7861–7865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kinoshita S, Chen BK, Kaneshima H, Nolan GP. (1998) Host control of HIV-1 parasitism in T cells by the nuclear factor of activated T cells. Cell 95: 595–604.

    Article  CAS  PubMed  Google Scholar 

  60. Boise LH, Petryniak B, Mao X, et al. (1993) The NFAT-1 DNA binding complex in activated T cells contains Fra-1 and JunB. Mol. Cell. Biol. 13: 1911–1919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Glimcher LH, Singh H. (1999) Transcription factors in lymphocyte development-T and B cells get together. Cell 96: 13–23.

    Article  CAS  PubMed  Google Scholar 

  62. Wyllie AH, Laskey RA, Finch J, Gurdon B. (1978) Selective DNA conservation and chromatin assembly after injection of SV40 DNA into Xenopus oocytes. Dev. Biol. 64: 178–188.

    Article  CAS  PubMed  Google Scholar 

  63. Borvak J. (1996) The use of cyclosporine, FK506, and SDZ NIM811 to prevent CD25-quiescent PB mononuclear cells from producing human immunodeficiency virus. J. Infect. Dis. 17: 850–853.

    Article  Google Scholar 

  64. Gualberto A, Marquez G, Carballo M, et al. (1998) P53 transactivation of the HIV-1 long terminal repeat is blocked by PD 144795, a calcineurin-inhibitor with anti-HIV properties. J. Biol. Chem. 273: 7088–7093.

    Article  CAS  PubMed  Google Scholar 

  65. Franke EK, Luban J. (1996) Inhibition of HIV-1 replication by cyclosporine A or related compounds corelates with the ability to disrupt the Gag-cyclophilin A interaction. Virology 222: 279–282.

    Article  CAS  PubMed  Google Scholar 

  66. Vacca A, Farina M, Maroder M, et al. (1994) Human immunodeficiency virus type-1 Tat enhances interleukin-2 promoter activity through synergism with phobol ester and calcium-mediated activation of the NF-AT cis-regulatory motif. Biochem. Biophys. Res. Comm. 205: 467–474.

    Article  CAS  PubMed  Google Scholar 

  67. Copeland KF, McKay PJ, Rosenthal KL. (1996) Suppression of the human immunodeficiency virus long terminal repeat by CD8+ T cells is dependent on the NFAT-1 element. AIDS Res. Hum. Retroviruses 12: 143–148.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. G. Pavlakis, Maryland, and Dr. R. Zufferey, Geneva, for critical comments on the manuscript, Dr. S. Thymianou, Patras, Mr. George Balanos, Patras, and Mr. M. Bacchetta, Geneva, for help with some of the experiments and Mr. S. Chraiti, Geneva, for the artwork. This work was supported by grants PENED/1274 from the Greek Ministry of Research and Technology and KARATHEODORIS/1952 from the University of Patras to A.M., by grant 31.46946.96 of the Swiss National Foundation, by the Sandoz Foundation, Basel, the Georges and Antoine Claraz Foundation, Zurich and the Societé Académique de Genève to D.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duri Rungger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouzaki, A., Doucet, A., Mavroidis, E. et al. A Repression-derepression Mechanism Regulating the Transcription of Human Immunodeficiency Virus Type 1 In Primary T Cells. Mol Med 6, 377–390 (2000). https://doi.org/10.1007/BF03401782

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401782

Keywords

Navigation