Skip to main content
Log in

Requirements for Allergen-Induced Airway Hyperreactivity in T and B Cell-Deficient Mice

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

The pathogenesis of asthma is believed to reflect antigen-induced airway inflammation leading to the recruitment of eosinophils and activation of mast cells through cell-associated IgE. Controversies persist however, regarding the relative importance of different pathogenic cells and effector molecules.

Materials and Methods

A variety of gene-targeted mice were examined for the induction of cholinergic airway hyperresponsiveness (AH), allergic airway inflammation, mucus production, and serum IgE reactivity following intratracheal challenge with a potent allergen. AH was determined using whole-body plethysmography following acetylcholine challenge. Where possible, results were confirmed using neutralizing antibodies and cell-specific reconstitution of immune deficient mice.

Results

T and B cell-deficient, recombinase-activating-gene-deficient mice (RAG −/−) failed to develop significant allergic inflammation and AH following allergen challenge. Reconstitution of RAG −/− mice with CD4+ T cells alone was sufficient to restore allergen-induced AH, allergic inflammation, and goblet cell hyperplasia, but not IgE reactivity. Sensitized B cell-deficient mice also developed airway hyperreactivity and lung inflammation comparable to that of wild-type animals, confirming that antibodies were dispensable. Treatment with neutralizing anti-IL-4 antibody or sensitization of IL-4-deficient mice resulted in loss of airway hyperreactivity, whereas treatment with anti-IL-5 antibody or sensitization of IL-5-deficient mice had no effect.

Conclusions

In mice, CD4+ T cells are alone sufficient to mediate many of the pathognomonic changes that occur in human asthma by a mechanism dependent upon IL-4, but independent of IL-5, IgE, or both. Clarification of the role played by CD4+ T cells is likely to stimulate important therapeutic advances in treatment of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walker C, Virchow J-C Jr, Bruijnzeel PLB, Blaser K. (1991) T cell subsets and their soluble products regulate eosinophilia in allergic and nonallergic asthma. J. Immunol. 146: 1829–1835.

    PubMed  CAS  Google Scholar 

  2. Robinson DS, Hamid Q, Ying S, et al. (1992) Predominant Th2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med. 326: 298–304.

    Article  CAS  PubMed  Google Scholar 

  3. Leung DYM, Martin RJ, Szefler SJ, et al. (1995) Dysregulation of interleukin 4, interleukin 5, and interferon γ gene expression in steroid-resistant asthma. J. Exp. Med. 181: 33–40.

    Article  CAS  PubMed  Google Scholar 

  4. Wallaert BP, Desreumaux MC, Copin I, et al. (1995) Immunoreactivity for interleukin 3 and 5 and granulocyte/macrophage colony-stimulating factor of intestinal mucosa in bronchial asthma. J. Exp. Med. 182: 1897–1904.

    Article  CAS  PubMed  Google Scholar 

  5. Robinson DS, Tsicopoulos A, Meng Q, Durham S, Kay AB, Hamid Q. (1996) Increased interleukin-10 messenger RNA expression in atopic allergy and asthma. Am. J. Respir. Cell Mol. Biol. 14: 113–117.

    Article  CAS  PubMed  Google Scholar 

  6. Goldstein RA, Paul WE, Metcalfe DD, Busse WW, Reece ER. (1994) Asthma. Ann. Intern. Med. 121: 698–708.

    Article  CAS  PubMed  Google Scholar 

  7. Shelhamer, JH, Levine SJ, Wu T, Jacoby DB, Kaliner MA, Rennard SI. (1995) Airway inflammation. Ann. Intern. Med. 123: 288–304.

    Article  CAS  PubMed  Google Scholar 

  8. Corry DB, Folkesson HG, Warnock ML, Erle DJ, Matthay MA, Wiener-Kronish JP, Locksley RM. (1996) Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J. Exp. Med. 183: 109–117.

    Article  CAS  PubMed  Google Scholar 

  9. Gavett SH, Chen X, Finkelman F, Wills-Karp M. (1994) Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am. J. Respir. Cell Mol. Biol 10: 587–593.

    Article  CAS  PubMed  Google Scholar 

  10. Garlisi CG, Falcone A, Kung TT, et al. (1995) T cells are necessary for Th2 cytokine production and eosinophil accumulation in airways of antigen-challenged allergic mice. Clin. Immunol. Immu-nopathol. 75: 75–83.

    Article  CAS  Google Scholar 

  11. Gonzalo J-A, Lloyd CM, Kremer L, et al. (1996) Eosinophil recruitment to the lung in a murine model of allergic inflammation. J. Clin. Invest. 98: 2332–2345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brusselle G, Kips J, Joos G, Bluethmann H, Pauwels R. (1995) Allergen-induced airway inflammation and bronchial responsiveness in wild-type and interleukin-4-deficient mice. Am. J. Respir. Cell Mol. Biol. 12: 254–259.

    Article  CAS  PubMed  Google Scholar 

  13. Gavett SH, O’Hearn DJ, Karp CL, et al. (1997) Interleukin-4 receptor blockade prevents airway responses induced by antigen challenge in mice. Am. J. Physiol. 272: L253–L261.

    PubMed  CAS  Google Scholar 

  14. Hogan SP, Mould A, Kikutani H, Ramsay AJ, Foster PS. (1997) Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins. J. Clin. Invest. 99: 1329–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kotsimbos TC, Ernst P, Hamid QA. (1996) Interleukin-13 and interleukin-4 are coexpressed in atopic asthma. Proc. Assoc. Am. Phys. 108: 368–373.

    PubMed  CAS  Google Scholar 

  16. Kaplan MH, Schindler U, Smiley ST, Grusby MJ. (1996) Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells. Immunity 4: 313–319.

    Article  CAS  PubMed  Google Scholar 

  17. Rankin JA, Picarella DE, Geba GP, et al. (1996) Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: Lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc. Natl. Acad. Sci. U.S.A. 93: 7821–7825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drazen JM, Arm JP, Austen KF. (1996) Sorting out the cytokines of asthma. J. Exp. Med. 183: 1–5.

    Article  CAS  PubMed  Google Scholar 

  19. Gleich GJ, Kita H. (1997) Bronchical asthma: Lessons from murine models. Proc. Natl. Acad. Sci. U.S.A. 94: 2101–2102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grunig G, Corry DB, Leach MW, Seymour BWP, Kurup VP, Rennick DM. (1997) Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. J. Exp. Med. 185: 1089–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wardlaw A, Geddes DM. (1992) Allergic bronchopulmonary aspergillosis: A review. J. R. Soc. Med. 85: 747–751.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Kitamura D, Roes J, Kuhn R, Rajewsky K. (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin µ chain gene. Nature 350: 423–426.

    Article  CAS  PubMed  Google Scholar 

  23. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68: 869–867.

    Article  CAS  PubMed  Google Scholar 

  24. Shinkai Y, Rathbun G, Lam K-P, et al. (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68: 855–867.

    Article  CAS  PubMed  Google Scholar 

  25. Kuhn R, Rajewsky K, Muller W. (1991) Generation and analysis of interleukin-4 deficient mice. Science 254: 707–710.

    Article  CAS  PubMed  Google Scholar 

  26. Kopf M, Brombacher F, Hodgkin PD, et al. (1996) IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4: 15–24.

    Article  CAS  PubMed  Google Scholar 

  27. Kump VP, Ramasamy M, Greenberger PA, Fink JN. (1988) Isolation and characterization of a relevant Aspergillus fumigatus antigen with IgG- and IgE-binding activity. Int. Arch. Allergy Appl. Immunol. 86: 176–182.

    Article  Google Scholar 

  28. Schumacher JH, O’Garra A, Shrader B, et al. (1988) The characterization of four monoclonal antibodies specific for mouse IL-5 and development of mouse and human IL-5 enzyme-linked immunosorbent. J. Immunol. 141: 1576–1581.

    PubMed  CAS  Google Scholar 

  29. Ohara J, Paul WE. (1985) Production of a monoclonal antibody to and molecular characterization of B cell stimulatory factor 1. Nature 315: 333–336.

    Article  CAS  PubMed  Google Scholar 

  30. Korsgen M, Erjefalt JS, Korsgren O, Sundler F, Persson CGA. (1997) Allergic eosinophil-rich inflammation develops in lungs and airways of B cell-deficient mice. J. Exp. Med. 185: 885–892.

    Article  Google Scholar 

  31. Hamelmann EA, Vella T, Oshiba A, Kappler JW, Marrack P, Gelfand EW. (1997) Allergic airway sensitization induces T cell activation but not airway hyperresponsiveness in B cell-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 94: 1350–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shimura S, Andoh Y, Haraguchi M, Shirato K. (1996) Continuity of airway goblet cells and intraluminal mucus in the airways of patients with bronchial asthma. Eur. Respir. J. 9: 1395–1401.

    Article  CAS  PubMed  Google Scholar 

  33. Bradding P, Feather IH, Howarth PH, et al. (1992) Interleukin 4 is localized to and released by human mast cells. J. Exp. Med. 176: 1381–1386.

    Article  CAS  PubMed  Google Scholar 

  34. Broide DH, Paine MM, Firestein GS. (1992) Eosinophils express interleukin 5 and granulocyte macrophage-colony-stimulating factor mRNA at sites of allergic inflammation in asthmatics. J. Clin. Invest. 90: 1414–1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bradding P, Roberts JA, Britten KM, et al. (1994) Interleukin-4, −5, −6 and tumor necrosis factor-α in normal and asthmatic airways: Evidence for the human mast cell as a source of these cytokines. Am. J. Respir. Cell Mol. Biol. 10: 471–480.

    Article  CAS  PubMed  Google Scholar 

  36. Burd PR, Thompson WC, Max EE, Mills FC. (1995) Activated mast cells produce interleukin 13. J. Exp. Med. 181: 1373–1380.

    Article  CAS  PubMed  Google Scholar 

  37. Nonaka M, Nonaka R, Woolley K, et al. (1995) Distinct immunohistochemical localization of IL-4 in human inflammed airway tissues. J. Immunol. 155: 3234–3244.

    PubMed  CAS  Google Scholar 

  38. Nakajima H, Gleich GJ, Kita H. (1996) Constitutive production of IL-4 and IL-10 and stimulated production of IL-8 by normal peripheral blood eosinophils. J. Immunol. 156: 4859–4866.

    PubMed  CAS  Google Scholar 

  39. Moller GM, de Jong TAW, van der Kwast TH, et al. (1996) Immunolocalization of interleukin-4 in eosinophils in the bronchial mucosa of atopic asthmatics. Am. J. Respir. Cell Mol. Biol. 14: 439–443.

    Article  CAS  PubMed  Google Scholar 

  40. Garssen J, Nijkamp FP, Van Der Vliet H, Van Loveren H. (1991) T-cell-mediated induction of airway hyperreactivity in mice. Am. Rev. Respir. Dis. 144: 931–938.

    Article  CAS  PubMed  Google Scholar 

  41. Watanabe A, Mishima H, Renzi PM, Xu LJ, Hamid Q, Martin JG. (1995) Transfer of allergic airway responses with antigen-primed CD4+ but not CD8+ T cells in brown Norway rats. J. Clin. Invest. 96: 1303–1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oettgen HC, Martin TR, Wynshaw-Boris A, Deng CX, Drazen JM, Leder P. (1994) Active anaphylaxis in IgE-deficient mice. Nature 370: 367–370.

    Article  CAS  PubMed  Google Scholar 

  43. Mehlhop PD, Van de Rijn M, Goldberg AB, et al. (1997) Allergen-induced bronchial hyperreactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma. Proc. Natl. Acad. Sci. U.S.A. 94: 1344–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Coyle AJ, Wagner K, Bertrand C, Tsuyuki S, Bews J, Heusser C. (1996) Central role of immunoglobulin (Ig) E in the induction of lung eosinophil infiltration and T helper 2 cell cytokine production: Inhibition by a non-anaphylactogenic anti-IgE antibody. J. Exp. Med. 183: 1303–1310.

    Article  CAS  PubMed  Google Scholar 

  45. Eum S-Y, Haile S, Lefort J, Huerre M, Vargaftig BB. 1995. Eosinophil recruitment into the respiratory epithelium following antigenic challenge in hyper-IgE mice is accompanied by interleukin 5-dependent bronchial hyperresponsiveness. Proc. Natl. Acad. Sci. U.S.A. 92: 12290–12294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oshiba A, Hamelmann E, Takeda K, Bradley KL, Loader JE, Larsen GL, Gelfand EW. (1996) Passive transfer of immediate hypersensitivity and airway hyperresponsiveness by allergen-specific immunoglobulin (Ig) E and IgG1 in mice. J. Clin. Invest. 97: 1398–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hamelmann E, Oshiba A, Schwarze J, et al. (1997) Allergen-specific IgE and IL-5 are essential for the development of airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 16: 674–682.

    Article  CAS  PubMed  Google Scholar 

  48. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. (1996) Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med. 183: 195–201.

    Article  CAS  PubMed  Google Scholar 

  49. Buijs J, Egbers MWEC, Lokhorst WH, Savelkoul HFJ, Nijkamp FP. (1995) Toxocara-induced eosinophilic inflammation. Airway function and effect of anti-IL-5. Am. J. Respir. Crit. Care Med. 151: 873–878.

    Article  CAS  PubMed  Google Scholar 

  50. Bozic CR, Lu B, Hopken UE, Gerard C, Gerard NP. (1996) Neurogenic amplification of immune complex inflammation. Science 273: 1722–1725.

    Article  CAS  PubMed  Google Scholar 

  51. Sylvestre DL, Ravetch JV. (1994) Fe receptors initiate the Arthus reaction: Redefining the inflammatory cascade. Science 265: 1095–1098.

    Article  CAS  PubMed  Google Scholar 

  52. Jose PJ, Griffiths-Johnson DA, Collins PD, et al. (1994) Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J. Exp. Med. 179: 881–887.

    Article  CAS  PubMed  Google Scholar 

  53. Gonzalo J-A, Jia G-Q, Aguirre V, et al. (1996) Mouse eotaxin expression parallels eosinophil accumulation during lung allergic inflammation but it is not restricted to a Th2-type response. Immunity 4: 1–14.

    Article  CAS  Google Scholar 

  54. Kita H, Gleich GJ. (1996) Chemokines active on eosinophils: Potential roles in allergic inflammation. J. Exp. Med. 183: 2421–2426.

    Article  CAS  PubMed  Google Scholar 

  55. Rothenberg ME, MacLean JA, Pearlman E, Luster AD, Leder P. (1997) Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J. Exp. Med. 185: 785–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stellato C, Collins P, Ponath PD, et al. (1997) Production of the novel C-C chemokine MCP-4 by airway cells and comparison of its biological activity to other C-C chemokines. J. Clin. Invest. 99: 926–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Einarsson O, Geba GP, Zhu Z, Landry M, Elias JA. (1996) Interleukin-11: Stimulation in vivo and in vitro by respiratory viruses and induction of airways hyperresponsiveness. J. Clin. Invest. 97: 915–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakajima H, Sano H, Nishimura T, Yoshida S, Iwamoto I. 1994. Role of vascular cell adhesion molecule 1/very late activation antigen 4 and intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 interactions in antigen-induced eosinophil and T cell recruitment into the tissue. J. Exp. Med. 179: 1145–1154.

    Article  CAS  PubMed  Google Scholar 

  59. Franklin W, Goetzl EJ. (1981) Total absence of eosinophils in a patient with an allergic disorder. Ann. Intern. Med. 94: 352–353.

    Article  CAS  PubMed  Google Scholar 

  60. Juhlin L, Michaelsson G. (1977) A new syndrome characterized by absence of eosinophils and basophils. Lancet 1: 1233–1235.

    Article  CAS  PubMed  Google Scholar 

  61. Lin RY, Lazarus TS. (1995) Asthma and related atopic disorders in outpatients attending an urban HIV clinic. Ann. Allergy Asthma Immunol. 74: 510–515.

    PubMed  CAS  Google Scholar 

  62. Locksley RM. (1994) Th2 cells: Help for helminths. J. Exp. Med. 179: 1405–1407.

    Article  CAS  PubMed  Google Scholar 

  63. Weiss KB, Gergen PJ, Hodgson TA. (1992) An economic evaluation of asthma in the United States. N. Engl. J. Med. 326: 862–866.

    Article  CAS  PubMed  Google Scholar 

  64. Seaton A, Godden DJ, Brown K. (1994) Increase in asthma: A more toxic environment or a more susceptible population? Thorax 49: 171–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Doull IJ, Lawrence S, Watson M, et al. (1996) Allelic association of gene markers on chromosomes 5q and llq with atopy and bronchial hyperresponsiveness. Am. J. Respir. Crit. Care Med. 153: 1280–1284.

    Article  CAS  PubMed  Google Scholar 

  66. Daniels SE, Bhattacharrya S, James A, et al. (1996) A genome-wide search for quantitative trait loci underlying asthma. Nature 383: 247–250.

    Article  CAS  PubMed  Google Scholar 

  67. Shirakawa T, Enomoto T, Shimazu S, Hopkin JM. (1997) The inverse association between tuberculin responses and atopic disorder. Science 275: 77–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the assistance of M. Kopf for permission to use IL-5 deficient mice, D. J. Fowell (UCSF) for T cell reconstitutions, E. Weider (Gladstone Institute, UCSF) for cell sorting, F. Kheradmand for artwork, and D. Erle (UCSF) for critical comments.

This work was supported by NIH HL56385, HL03344, the American Lung Association, and a U. S. Veterans Affairs Medical Research grant. R. M. L. is a Burroughs Wellcome Fund Scholar in Molecular Parasitology. DNAX Research Institute of Molecular and Cellular Biology is supported by Schering Plough Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Locksley.

Additional information

Communicated by R. Locksley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corry, D.B., Grünig, G., Hadeiba, H. et al. Requirements for Allergen-Induced Airway Hyperreactivity in T and B Cell-Deficient Mice. Mol Med 4, 344–355 (1998). https://doi.org/10.1007/BF03401741

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401741

Keywords

Navigation