Skip to main content
Log in

Gene Transfer into Hepatocytes Mediated by Helper Virus-Free HSV/AAV Hybrid Vectors

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Vectors based on herpes simplex virus type 1 (HSV-1) can efficiently transduce hepatocytes in the mouse liver, and vector genomes can persist for at least 2 months. However, 24 hr after gene transfer, the number of cells that express the transgene decreases rapidly and no transduced cells are detectable after 7 days. In this study, we examined the capability of a helper virus-free HSV/AAV hybrid amplicon vector to extend transgene expression in hepatocytes in vivo.

Materials and Methods

HSV-1 amplicon or HSV/AAV hybrid amplicon vectors that express reporter genes from different transcriptional regulatory sequences were packaged into HSV-1 virions using a helper virus-free packaging system. To determine relative transduction efficiencies, vector stocks were titered on four different cell lines, including hamster kidney (BHK21) and human lung (Hs913T) fibroblasts, and mouse (G6Pase−/−) and human (NPLC) hepatocytes. After in vivo injection of vector stocks into mouse liver, tissue sections were examined for reporter gene expression and cellular inflammatory response. Blood samples were collected to measure serum transaminase levels as a biochemical index of liver toxicity.

Results

Expression of a reporter gene from liver-specific promoter sequences was consistently more effective in hepatic cells compared with fibroblasts, whereas the opposite was true when using an HSV-1 immediate-early promoter. Expression in hepatocytes in vivo was markedly longer from HSV/AAV hybrid vector compared with traditional HSV-1 amplicon vector: the number of transduced cells (∼2% of all hepatocytes) remained stable over 7 days after injection of HSV/AAV hybrid vector, whereas no transduced cells were detected 7 days after gene transfer with standard HSV-1 amplicon vector. The rapid decline in reporter gene expression from standard amplicons was not solely caused by a B or T lymphocyte-mediated immune response, as it also occurred in RAG2−/− mice. Hepatocyte toxicity and cellular inflammatory effects associated with HSV/AAV hybrid vector-mediated gene transfer were minimal, and readministration of vector stock proved equally effective in naive mice and in animals that received a first vector dose 4 weeks earlier.

Conclusions

HSV/AAV hybrid amplicon vectors support gene expression in vivo for considerably longer than do traditional HSV-1 amplicon vectors. Moreover, expression from these vectors does not provoke an overt inflammatory or immune response, allowing efficacious expression following repeated in vivo dosing. These characteristics suggest that such vectors may hold future promise for hepatic gene replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Strauss M. (1994) Liver-directed gene therapy: prospects and problems. Gene Ther. 1: 156–164.

    PubMed  CAS  Google Scholar 

  2. Mulligan RC. (1993) The basic science of gene therapy. Science 260: 926–932.

    Article  CAS  PubMed  Google Scholar 

  3. Ferry N, Duplessis O, Houssin D, Danos O, Heard JM. (1991) Retroviral-mediated gene transfer into hepatocytes in vivo. Proc. Natl. Acad. Sci. U.S.A. 88: 8377–8381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rettinger SD, Kennedy SC, Wu X, et al. (1994) Liver-directed gene therapy: Quantitative evaluation of promoter elements by using in vivo retroviral transduction. Proc. Natl. Acad. Sci. U.S.A. 91: 1460–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jaffe H, Danel C, Longenecker G, et al. (1992) Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat. Genet. 1: 372–378.

    Article  CAS  PubMed  Google Scholar 

  6. Kay MA, Landen CN, Rothenberg SA, et al. (1994) In vivo hepatic gene therapy: Complete albeit transient correction of factor IX deficiency in hemophilia B dogs. Proc. Natl. Acad. Sci. U.S.A. 91: 2353–2357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ohashi T, Watabe K, Uehara K, Sly WS, Vogler C, Eto Y. (1997) Adenovirus-mediated gene transfer and expression of human beta-glucuronidase gene in the liver, spleen, and central nervous system in mucopolysaccharidosis type VII mice. Proc. Natl. Acad. Sci. U.S.A. 94: 1287–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang Y, Wilson JM (1995) Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo. J. Immunol. 155: 2564–2570.

    CAS  PubMed  Google Scholar 

  9. Jooss K, Yang Y, Wilson JM. (1996) Cyclophosphamide diminishes inflammation and prolongs transgene expression following delivery of adenoviral vectors to mouse liver and lung. Hum. Gene Ther. 7: 1555–1566.

    Article  CAS  PubMed  Google Scholar 

  10. Gao GP, Yang Y, Wilson JM. (1996) Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy. J. Virol. 70: 8934–8943.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Berns KI. (1996) Parvoviridae: The viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds). Virology, 3rd ed. Lippincott-Raven, Philadelphia, pp. 2173–2197.

    Google Scholar 

  12. Flotte TR, Afione SA, Zeitlin PL. (1994) Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am. J. Respir. Cell Mol. Biol. 11: 517–521.

    Article  CAS  PubMed  Google Scholar 

  13. Russel DW, Miller AD, Alexander IE. (1994) Adeno-associated virus vectors preferentially transduce cells in S phase. Proc. Natl. Acad. Sci. U.S.A. 91: 8915–8919.

    Article  Google Scholar 

  14. McLaughlin SK, Collis P, Hermonat PL, Muzycka N. (1988) Adeno-associated virus general transduction vectors: Analysis of proviral structures. J. Virol. 62: 1963–1973.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Walsh CE, Liu JM, Xiao X, Young NS, Nienhuis AW, Samulski RJ. (1992) Regulated high level expression of a human gammaglobin gene introduced into erythroid cells by an adeno-associated virus vector. Proc. Natl. Acad. Sci. U.S.A. 89: 7257–7261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Linden RM, Winocour E, Berns KI. (1996) The recombination signals for adeno-associated virus site-specific integration. Proc. Natl. Acad. Sci. U.S.A. 93: 7966–7972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM. (1996) Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J. Virol. 70: 520–532.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Koeberl DD, Alexander IE, Halbert CL, Russell DW, Miller AD. (1997) Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc. Natl. Acad. Sci. U.S.A. 94: 1426–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weitzman MD, Kyöstiö SRM, Kotin RM, Owens RA. (1994) Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc. Natl. Acad. Sci. U.S.A. 91: 5808–5812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Balague C, Kalla M, Zhang WW. (1997) Adeno-associated virus Rep78 protein and terminal repeats enhance integration of DNA sequences into the cellular genome. J. Virol. 71: 3299–3306.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Glorioso JC, Bender MA, Goins WF, DeLuca N, Fink DJ. (1995) Herpes simplex virus as a gene-delivery vector for the central nervous system. In: Kaplitt MG, Loewy AD (eds). Viral Vectors: Gene Therapy and Neuroscience Applications. Academic Press, New York, pp. 1–23.

    Google Scholar 

  22. Breakefield XO, Kramm CM, Chiocca EA, Pechan PA. (1995) Herpes simplex virus vectors for tumor therapy. In: Sobol RE, Scanlon KJ (eds). The Internet Book of Gene Therapy: Cancer Gene Therapeutics. Appleton and Lange, Stamford, CT, pp. 41–56.

    Google Scholar 

  23. Fraefel C, Breakefield XO, Jacoby D. (1998) HSV-1 amplicon. In: Chiocca EA, Breakefield XO (eds). Gene Therapy for Neurological Disorders and Brain Tumors. Humana Press, Totowa, NJ, pp. 63–82.

    Chapter  Google Scholar 

  24. Miyanohara A, Johnson PA, Elam RL, et al. (1992) Direct gene transfer to the liver with herpes simplex virus type 1 vectors: Transient production of physiologically relevant levels of circulating factor IX. New Biol. 4: 238–246.

    PubMed  CAS  Google Scholar 

  25. Lu B, Gupta S, Federoff HJ. (1995) Ex vivo hepatic gene transfer in mouse using a defective herpes simplex virus-1 vector. Hepatology 21: 752–759.

    PubMed  CAS  Google Scholar 

  26. Fong Y, Federoff HJ, Brownlee M, Blumberg D, Blumgart LH, Brennan MF. (1995) Rapid and efficient gene transfer in human hepatocytes by herpes viral vectors. Hepatology 22: 723–729.

    PubMed  CAS  Google Scholar 

  27. Johnson PA, Yoshida K, Gage FH, Friedman T. (1992) Effects of gene transfer into cultured CNS neurons with a replication-defective herpes simplex virus type 1 vector. Mol. Brain Res. 12: 95–102.

    Article  CAS  PubMed  Google Scholar 

  28. Spaete RR, Frenkel N. (1982) The herpes simplex virus amplicon: Analyses of cis-acting replication functions. Cell 30: 295–304.

    Article  CAS  PubMed  Google Scholar 

  29. Fraefel C, Song S, Lim F, et al. (1996) Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J. Virol. 70: 7190–7197.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Aboody-Guterman KS, Pechan PA, Rainov NG, et al. (1997) Green fluorescent protein as a reporter for retrovirus and helper virus-free HSV-1 amplicon vector-mediated gene transfer into neural cells in culture and in vivo. NeuroReport (in press).

  31. Johnston KM, Jacoby D, Pechan P, et al. (1997) HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum. Gene Ther. 8: 359–370.

    Article  CAS  PubMed  Google Scholar 

  32. Lei K-J, Chen H, Pan C-J, et al. (1996) Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type-1a mouse. Nat. Genet. 13: 203–209.

    Article  CAS  PubMed  Google Scholar 

  33. Shelly LL, Lei K-J, Pan C-J, et al. (1993) Isolation of the gene for murine glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1A. J. Biol. Chem. 268: 21482–21485.

    PubMed  CAS  Google Scholar 

  34. Pinkert CA, Ornitz DM, Brinster RL, Palmiter RD. (1987) An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. 1: 268–276.

    Article  CAS  PubMed  Google Scholar 

  35. Cunningham C, Davison AJ. (1993) A cosmid-based system for constructing mutants of herpes simplex virus type 1. Virology 197: 116–124.

    Article  CAS  PubMed  Google Scholar 

  36. Alt FW, Rathbun G, Oltz E, Taccioli G, Shinhai Y. (1992) Function and control of recombination-activating gene activity. Ann. NY Acad. Sci. 657: 277–294.

    Article  Google Scholar 

  37. Lei K-J, Shelly LL, Pan C-J, Sidbury JB, Chou JY. (1993) Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type la. Science 262: 580–583.

    Article  CAS  PubMed  Google Scholar 

  38. Folkman J, Philippart A, Tze W-J, Crigler J. (1972) Portacaval shunt for glycogen storage disease: Value of prolonged intravenous hyperalimentation before surgery. Surgery 72: 306–314.

    PubMed  CAS  Google Scholar 

  39. Geller AI, Breakefield XO. (1988) A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science 241: 1667–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo ZS, Wang LH, Eisensmith RC, Woo SLC. (1996) Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Ther. 3: 802–810.

    PubMed  CAS  Google Scholar 

  41. Lu B, Federoff HJ. (1995) Herpes simplex virus type 1 amplicon vectors with glucocorticoid-inducible gene expression. Hum. Gene Ther. 6: 419–428.

    Article  CAS  PubMed  Google Scholar 

  42. Babiss LE, Herbst RS, Bennet AL, Darnell JE. (1987) Factors that interact with the rat albumin promoter are present both in hepatocytes and other cell types. Genes Dev. 1: 256–267.

    Article  CAS  PubMed  Google Scholar 

  43. Carlson JA, Rogers BB, Sifers RN, Hawkins HK, Finegold MJ, Woo SLC. (1988) Multiple tissues express alpha 1-antitrypsin in transgenic mice and man. J. Clin. Invest. 82: 26–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen R-F, Clift SM, DeMayo JL, Sifers RN, Finegold MJ, Woo SLC. (1989) Tissue-specific regulation of human alpha 1-antitrypsin gene expression in transgenic mice. DNA 8: 101–108.

    Article  CAS  PubMed  Google Scholar 

  45. Ward P, Berns KI. (1996) In vitro replication of adeno-associated virus DNA: Enhancement by extracts from adenovirus-infected HeLa cells. J. Virol. 70: 4495–4501.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. K. Ponder, K. Zaret, H. Federoff, and F. Boyce for plasmid constructs, Dr. B. Knowles for the NPLC cells, Dr. F. Smith for collaborative insight, and J. Elfar for critically reading the manuscript. This work was supported by the Swiss National Science Foundation and the American Liver Foundation (C.F.), NINDS NS24279, NCI CA69246, NIDCD DC002281 (X.O.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornel Fraefel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraefel, C., Jacoby, D.R., Lage, C. et al. Gene Transfer into Hepatocytes Mediated by Helper Virus-Free HSV/AAV Hybrid Vectors. Mol Med 3, 813–825 (1997). https://doi.org/10.1007/BF03401718

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401718

Keywords

Navigation