Skip to main content

Hepatic Delivery of Artificial Micro RNAs Using Helper-Dependent Adenoviral Vectors

  • Protocol
SiRNA Delivery Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1364))

Abstract

The potential of RNA interference (RNAi)-based gene therapy has been demonstrated in many studies. However, clinical application of this technology has been hampered by a paucity of efficient and safe methods of delivering the RNAi activators. Prolonged transgene expression and improved safety of helper-dependent adenoviral vectors (HD AdVs) makes them well suited to delivery of engineered artificial intermediates of the RNAi pathway. Also, AdVs’ natural hepatotropism makes them potentially useful for liver-targeted gene delivery. HD AdVs may be used for efficient delivery of cassettes encoding short hairpin RNAs and artificial primary microRNAs to the mouse liver. Methods for the characterization of HD AdV-mediated delivery of hepatitis B virus-targeting RNAi activators are described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ely A, Naidoo T, Arbuthnot P (2009) Efficient silencing of gene expression with modular trimeric Pol II expression cassettes comprising microRNA shuttles. Nucleic Acids Res 37, e91

    Article  PubMed Central  PubMed  Google Scholar 

  2. Marimani MD, Ely A, Buff MC, Bernhardt S, Engels JW, Arbuthnot P (2013) Inhibition of hepatitis B virus replication in cultured cells and in vivo using 2′-O-guanidinopropyl modified siRNAs. Bioorg Med Chem 21:6145–6155

    Article  CAS  PubMed  Google Scholar 

  3. Knoepfel SA, Centlivre M, Liu YP, Boutimah F, Berkhout B (2012) Selection of RNAi-based inhibitors for anti-HIV gene therapy. World J Virol 1:79–90

    Article  PubMed Central  PubMed  Google Scholar 

  4. Azimzadeh Jamalkandi S, Azadian E, Masoudi-Nejad A (2014) Human RNAi pathway: crosstalk with organelles and cells. Funct Integr Genomics 14:31–46

    Article  CAS  PubMed  Google Scholar 

  5. Carmona S, Ely A, Crowther C, Moolla N, Salazar FH, Marion PL, Ferry N, Weinberg MS, Arbuthnot P (2006) Effective inhibition of HBV replication in vivo by anti-HBx short hairpin RNAs. Mol Ther 13:411–421

    Article  CAS  PubMed  Google Scholar 

  6. Crowther C, Ely A, Hornby J, Mufamadi S, Salazar F, Marion P, Arbuthnot P (2008) Efficient inhibition of hepatitis B virus replication in vivo, using polyethylene glycol-modified adenovirus vectors. Hum Gene Ther 19:1325–1331

    Article  CAS  PubMed  Google Scholar 

  7. Mowa MB, Crowther C, Ely A, Arbuthnot P (2012) Efficient silencing of hepatitis B virus by helper-dependent adenovirus vector-mediated delivery of artificial antiviral primary micro RNAs. MicroRNA 1:19–25

    Article  CAS  PubMed  Google Scholar 

  8. Russell WC (2000) Update on adenovirus and its vectors. J Gen Virol 81:2573–2604

    Article  CAS  PubMed  Google Scholar 

  9. Smith JG, Wiethoff CM, Stewart PL, Nemerow GR (2010) Adenovirus. Curr Top Microbiol Immunol 343:195–224

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Russell WC (2009) Adenoviruses: update on structure and function. J Gen Virol 90:1–20

    Article  CAS  PubMed  Google Scholar 

  11. Huard J, Lochmuller H, Acsadi G, Jani A, Massie B, Karpati G (1995) The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther 2:107–115

    CAS  PubMed  Google Scholar 

  12. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H, Pink R, Buckley SMK, Greig JA, Denby L, Custers J, Morita T, Francischetti IMB, Monteiro RQ, Barouch DH, van Rooijen N, Napoli C, Havenga MJE, Nicklin SA, Baker AH (2008) Adenovirus Serotype 5 hexon mediates liver gene transfer. Cell 132:397–409

    Article  CAS  PubMed  Google Scholar 

  13. Sandig V, Youil R, Bett AJ, Franlin LL, Oshima M, Maione D, Wang F, Metzker ML, Savino R, Caskey CT (2000) Optimization of the helper-dependent adenovirus system for production and potency in vivo. Proc Natl Acad Sci U S A 97:1002–1007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML (1997) Construction of adenovirus vectors through Cre-lox recombination. J Virol 71:1842–1849

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Alemany R, Dai Y, Lou YC, Sethi E, Prokopenko E, Josephs SF, Zhang WW (1997) Complementation of helper-dependent adenoviral vectors: size effects and titer fluctuations. J Virol Methods 68:147–159

    Article  CAS  PubMed  Google Scholar 

  16. Majhen D, Ambriovic-Ristov A (2006) Adenoviral vectors—how to use them in cancer gene therapy? Virus Res 119:121–133

    Article  CAS  PubMed  Google Scholar 

  17. Benihoud K, Yeh P, Perricaudet M (1999) Adenovirus vectors for gene delivery. Curr Opin Biotechnol 10:440–447

    Article  CAS  PubMed  Google Scholar 

  18. Brunetti-Pierri N, Stapleton GE, Law M, Breinholt J, Palmer DJ, Zuo Y, Grove NC, Finegold MJ, Rice K, Beaudet al, Mullins CE, Ng P (2009) Efficient, long-term hepatic gene transfer using clinically relevant HDAd doses by balloon occlusion catheter delivery in nonhuman primates. Mol Ther 17:327–333

    Google Scholar 

  19. Toietta G, Pastore L, Cerullo V, Finegold M, Beaudet al, Lee B (2002) Generation of helper-dependent adenoviral vectors by homologous recombination. Mol Ther 5:204–210

    Google Scholar 

  20. Mowa MB, Crowther C, Arbuthnot P (2010) Therapeutic potential of adenoviral vectors for delivery of expressed RNAi activators. Expert Opin Drug Deliv 7:1373–1385

    Article  CAS  PubMed  Google Scholar 

  21. Palmer DN, Ng P (2008) Methods for the production of helper dependent adenoviral vectors. In: LeDoux J (ed) Gene therapy protocols, vol 433, Methods in molecular biology. Springer, New York, pp 33–54

    Google Scholar 

  22. Shi CX, Graham FL, Hitt MM (2006) A convenient plasmid system for construction of helper-dependent adenoviral vectors and its application for analysis of the breast-cancer-specific mammaglobin promoter. J Gene Med 8:442–451

    Article  CAS  PubMed  Google Scholar 

  23. Ng P, Beauchamp C, Evelegh C, Parks R, Graham FL (2001) Development of a FLP/frt system for generating helper-dependent adenoviral vectors. Mol Ther 3:809–815

    Article  CAS  PubMed  Google Scholar 

  24. Palmer D, Ng P (2003) Improved system for helper-dependent adenoviral vector production. Mol Ther 8:846–852

    Article  CAS  PubMed  Google Scholar 

  25. Ng P, Parks RJ, Graham FL (2002) Preparation of helper-dependent adenoviral vectors. Methods Mol Med 69:371–388

    CAS  PubMed  Google Scholar 

  26. Palmer DJ, Ng P (2004) Physical and infectious titers of helper-dependent adenoviral vectors: a method of direct comparison to the adenovirus reference material. Mol Ther 10:792–798

    Article  CAS  PubMed  Google Scholar 

  27. Nyberg-Hoffman C, Aguilar-Cordova E (1999) Instability of adenoviral vectors during transport and its implication for clinical studies. Nat Med 5:955–957

    Article  CAS  PubMed  Google Scholar 

  28. Marion PL, Salazar FH, Liittschwager K, Bordier BB, Seegers C, Winters MA, Cooper AD, Cullen JM (2003) A transgenic mouse lineage useful for testing antivirals targeting hepatitis B virus. In: Schinazi R, Sommadossi J-R and Rice C.M. (eds) Frontiers in viral hepatitis. Elsevier Science, Amsterdam, pp 197–202

    Google Scholar 

Download references

Acknowledgments

The authors’ laboratory receives financial assistance from the South African National Research Foundation (NRF, GUNs 81768, 81692, 68339, 85981 & 77954), Medical Research Council and Poliomyelitis Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Arbuthnot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Crowther, C., Mowa, B., Arbuthnot, P. (2016). Hepatic Delivery of Artificial Micro RNAs Using Helper-Dependent Adenoviral Vectors. In: Shum, K., Rossi, J. (eds) SiRNA Delivery Methods. Methods in Molecular Biology, vol 1364. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3112-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3112-5_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3111-8

  • Online ISBN: 978-1-4939-3112-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics