Skip to main content
Log in

Analysis of Families at Risk for Insulin-Dependent Diabetes Mellitus Reveals that HLA Antigens Influence Progression to Clinical Disease

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Individuals at risk for insulin-dependent diabetes mellitus (IDDM), with an affected first-degree relative, can be identified by the presence of islet cell antibodies (ICA). ICA-positive relatives progress at variable rates to IDDM and identification of those at highest risk is a prerequisite for possible preventative treatment. Those who develop IDDM may exhibit less genetic heterogeneity than their ICA-positive or ICA-negative relatives. Specific human leucocyte antigen (HLA) genes predispose to IDDM but could also influence the rate of progression of preclinical disease. Therefore, by comparing HLA antigen frequencies between first-degree relatives, we sought to identify HLA genes that influence progression to IDDM.

Materials and Methods

HLA antigen frequencies were compared in 68 IDDM, 53 ICA-positive, and 96 ICA-negative first-degree relatives from 40 Caucasoid families. Predictions were tested in a panel of 270 unrelated IDDM subjects. HLA typing was performed serologically (HLA class I and II) and by sequence-specific oligotyping (11th International Histocompatibility Workshop protocol) (HLA class II). ICA tests were measured by an internationally standardized indirect immunofluorescence assay.

Results

In general, known susceptibility class II HLA antigens increased in frequency and known protective class II HLA antigens decreased in frequency, from ICA-negative to ICA-positive to IDDM relatives. Thus, DR4 and DQ8 increased whereas DR2 and DQ6 decreased; DR3 and DQ2 increased from ICA-negative to ICA-positive relatives, but not further in IDDM relatives. The high-risk DR3, 4 phenotype increased across the three groups; DR4,X was unchanged, and DR3,X and DRX,X both decreased. The HLA class I antigen, A24, occurred more frequently in ICA-positive relatives who developed IDDM and, in 270 unrelated IDDM subjects, was associated with an earlier age at diagnosis of IDDM in those with the lower risk class II phenotypes DR4,4 and DR3,X.

Conclusions

HLA-DR3 and DQ2 predispose to islet autoimmunity, but not development of clinical IDDM in the absence and DR4 and DQ8. DR4 and DQ8 predispose to the development of clinical IDDM in ICA-positive relatives, in combination with DR3-DQ2 and other haplotypes but not when homozygous. HLA-A24 is significantly associated with rapid progression to IDDM in ICA-positive relatives and with an earlier age at clinical diagnosis. Analysis of IDDM families reveals that HLA genes not only predispose to islet autoimmunity but influence progression to clinical disease. The findings have implications for identifying high-risk relatives as candidates for possible preventative therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Honeyman MC, Harrison LC. (1993) The immunological insult in type 1 diabetes mellitus. Springer Semin. Immunopathol 14: 253–274.

    Article  CAS  PubMed  Google Scholar 

  2. Bingley PJ, Bonifacio E, Gale EAM. (1993) Can we really predict IDDMM? Diabetes 42: 213–220.

    Article  CAS  PubMed  Google Scholar 

  3. Ghosh S, Palmer SM, Rodrigues NR, et al. (1993) Polygenic control of autoimmune diabetes mellitus in nonobese diabetic mice. Nature Genet. 4: 404–409.

    Article  CAS  PubMed  Google Scholar 

  4. Tait BD, Harrison LC. (1991) Overview: The major histocompatibility complex and insulin dependent diabetes mellitus. Bailiiere’s Clin. Endocrinol. Metab. 5: 211–228.

    Article  CAS  Google Scholar 

  5. Caillat-Zucman S, Garchon HJ, Timsit J, et al. (1992) Age-dependent genetic heterogeneity of type 1 insulin-dependent diabetes mellitus mellitus. J. Clin. Invest. 90: 2242–2250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tait BD, Harrison LC, Drummond BP, Stewart V, Varney M, Honeyman MC. (1995) HLA and age at diagnosis of insulin-dependent diabetes mellitus mellitus. Hum. Immunol. 42: 116–122.

    Article  CAS  PubMed  Google Scholar 

  7. Tarn AC, Thomas JA, Dean BM, et al. (1993) Predicting insulin-dependent diabetes mellitus. Lancet 1: 845–850.

    Google Scholar 

  8. Bingley PJ, Gale EAM. (1991) Lessons from family studies. Balliere’s Clin. Endocrinol. Metab. 5: 211–228.

    Article  Google Scholar 

  9. Kimura A, Sasazuki T. (1991) Protocol for HLA DNA typing technique. In: Tsuji K, Aizawa M, Sasazuki T (eds). HLA 1991—Proceedings of the Eleventh International Histocompatibility Workshop and Conference. Oxford University Press, Oxford, pp. 397–419.

    Google Scholar 

  10. Harrison LC, Honeyman MC, De Aizpurua HJ, et al. (1991) Inverse relationship between humoral and cellular immunity to glutamic acid decarboxylase in subjects at risk of insulin-dependent diabetes mellitus. Lancet 341: 1365–1369.

    Article  Google Scholar 

  11. Fennessy M, Metcalfe K, Hitman G, et al. (1994) A gene in the HLA class I region contributes to susceptibility to IDDMM in the Finnish population. Diabetologia 37: 937–944.

    Article  CAS  PubMed  Google Scholar 

  12. Nakanishi K, Kobayashi T, Murasi T. (1993) Association of HLA-A24 with complete β-cell destruction in IDDMM. Diabetes 42: 1086–1093.

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi T, Tamemoto K, Nakanishi K, et al. (1993) Immunogenetic and clinical characterisation of slowly progressive IDDMM. Diab. Care 16: 780–788.

    Article  CAS  Google Scholar 

  14. Pfeiffer C, Murray J, Madri J, Bottomly K. (1991) Selective activation of THI and TH2 like cells in vivo. Response to human collagen IV. Immunol. Rev. 123: 65–84.

    Article  CAS  PubMed  Google Scholar 

  15. Pfeiffer C, Stein J, Southwood S, Ketelaar H, Sette A, Bottomly K. (1995) Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo. J. Exp. Med. 181: 1569–1574.

    Article  CAS  PubMed  Google Scholar 

  16. Hammer J, Belunis C, Bolin D, et al. (1994) High-affinity binding of short peptides to major histocompatibility class II molecules by anchor combinations. Proc. Natl. Acad. Sci. 91: 4456–4460.

    Article  CAS  PubMed  Google Scholar 

  17. Rothbard JB, Marshall K, Wilson KJ, Fugger L, Zaller D. (1994) Prediction of peptide affinity to HLA DRB 1*0401. Int. Arch. Allergy Immunol. 105: 1–7.

    Article  CAS  PubMed  Google Scholar 

  18. Sidney J, Oseroff C, Southwood S, et al. (1992) DRB 1*0301 molecules recognise a structural motif distinct from the one recognised by most DRB1 alleles. J. Immunol. 149: 2634–2640.

    PubMed  CAS  Google Scholar 

  19. Malcherek G, Gnau V, Stevanovic S, Rammensee HG, Jung G, Melms A. (1994) Analysis of allele-specific contact sites of natural HLA-DR17 ligands. J. Immunol. 153: 1141–1149.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Enzio Bonifacio for critical reading of the manuscript and we thank Katherine Kelly and Margaret Thompson for secretarial assistance. These studies were supported by the Victorian Health Promotion Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honeyman, M.C., Harrison, L.C., Drummond, B. et al. Analysis of Families at Risk for Insulin-Dependent Diabetes Mellitus Reveals that HLA Antigens Influence Progression to Clinical Disease. Mol Med 1, 576–582 (1995). https://doi.org/10.1007/BF03401595

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401595

Navigation