Skip to main content
Log in

Making biological materials

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Tatham A S, Shewry P R. Comparative Structures and Properties of Elastic Proteins. Philosophical Transactions of the Royal Society B, 2002, 357: 229–234.

    Article  Google Scholar 

  2. Burgeson R E, Nimni M E. Collagen Types. Molecular Structure and Tissue Distribution. Clinical Orthopaedics & Related Research, 1992, 282: 250–272.

    Google Scholar 

  3. Neville A C. Biology of Fibrous Composites: Development beyond the Cell Membrane. The University Press, Cambridge, 1993.

    Book  Google Scholar 

  4. Mann S. Biomimetic Materials Chemistry. Wiley– VCH, Munich, 1996.

    Google Scholar 

  5. Holstein T W, Benoit M, Herder G V, Wanner G, David C N, Gaub H E. Fibrous mini-collagens in Hydra nematocysts. Science, 1994, 265: 402–404.

    Article  Google Scholar 

  6. Amis E J, Carriere C J, Ferry J D, Veis A. Effect of pH on Collagen Flexibility Determined from Dilute Solution Viscoelastic Measurements. International Journal of Biological Macromolecules, 1985, 7: 130–134.

    Article  Google Scholar 

  7. Knight D P, Feng D, Stewart M. Structure and Function of the Selachian Egg Case. Biological Reviews, 1996, 71: 81–111.

    Article  Google Scholar 

  8. Knight D P, Feng D, Stewart M, King E. Changes in Macromolecular Organization in Collagen Assemblies during Secretion in the Nidamental Gland and Formation of the Egg Capsule Wall in the Dogfish Scyliorhinus Canicida. Philosophical Transactions of the Royal Society B, 1993, 341: 419–436.

    Article  Google Scholar 

  9. Knight D P, Feng D. Formation of the Dogfish Egg Capsule, a Coextruded, Multilayer Laminate. Biomimetics, 1992, 1: 151–176.

    Google Scholar 

  10. Hepworth D G, Gathercole L J, Knight D P, Feng D, Vincent J F V. Correlation of Ultrastructure and Tensile Properties of a Collagenous Composite Material, the Egg Capsule of the Dogfish, Scyliorhinus spp., a Sophisticated Collagenous Material. Journal of Structural Biology, 1994, 112: 231–240.

    Article  Google Scholar 

  11. Gordon J E. The New Science of Strong Materials, or why You Don’t Fall Through the Floor. Penguin, Harmondsworth, 1976.

    Google Scholar 

  12. Trotter J A, Koob T J. Collagen and Proteoglycan in a Seaurchin Ligament with Mutable Mechanical Properties. Cell and Tissue Research, 1989, 258: 527–539.

    Article  Google Scholar 

  13. Wilkie I C. Nervously Mediated Change in the Mechanical Properties of a Brittlestar Ligament. Marine Behaviour and Physiology, 1978, 5: 289–306.

    Article  Google Scholar 

  14. Thurmond F A, Trotter J A. Morphology and Biomechanics of the Microfibrillar Network of Sea Cucumber Dermis. Journal of Experimental Biology, 1996, 199: 1817–1828.

    Google Scholar 

  15. Bell E C, Gosline J M. Mechanical Design of Mussel Byssus: Material Yield Enhances Attachment Strength. Journal of Experimental Biology, 1996, 199: 1005–1017.

    Google Scholar 

  16. Addadi L, Weiner S. A Pavement of Pearl. Nature, 1997, 389: 912–915.

    Article  Google Scholar 

  17. Weiner S, Traub W. Macromolecules in Mollusc Shells and Their Functions in Biomineralization. Philosophical Transactions of the Royal Society B, 1984, 304: 425–434.

    Article  Google Scholar 

  18. Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K, Takahashi T. Structures of Mollusc Shell Framework Proteins. Nature, 1997, 387: 563–564.

    Article  Google Scholar 

  19. Jackson A P, Vincent J F V, Turner R M. The Mechanical Design of Nacre. Proceedings of the Royal Society B, 1988, 234: 415–440.

    Article  Google Scholar 

  20. Weiner S, Traub W. Organization of Hydroxyapatite Crystals within Collagen Fibrils. FEBS Letters, 1986, 206: 262–266.

    Article  Google Scholar 

  21. Weiner S, Arad T, Traub W. Crystal Organisation in Rat Bone Lamellae. FEBS Letters, 1991, 285: 49–54.

    Article  Google Scholar 

  22. Watkins M R. The Development of a Tough Artificial Composite Based on Antler Bone. PhD Thesis, University of Reading, 1987.

    Google Scholar 

  23. Currey J D. The Mechanical Adaptations of Bones. The University Press, Princeton, 1984.

    Book  Google Scholar 

  24. Spatz H-C, O’Leary E J, Vincent J F V. Young’ s Moduli and Shear Moduli in Cortical Bone. Proceedings of the Royal Society B, 1996, 263: 287–294.

    Article  Google Scholar 

  25. Wagner H D, Weiner S. On the Relationship Between the Microstructure of Bone and Its Mechanical Stiffness. Biomechanics, 1992, 25: 1311–1320.

    Article  Google Scholar 

  26. Currey J D. Mechanical Properties of Bone Tissues with Greatly Differing Functions. Journal of Biomechanics, 1979, 12: 313–319.

    Article  Google Scholar 

  27. Cook J, Gordon J E. A Mechanism for the Control of Crack Propagation in All-brittle Systems. Proceedings of the Royal Society A, 1964, 282: 508–520.

    Article  Google Scholar 

  28. Currey J D, Brear K. Tensile Yield in Bone. Calcified Tissue Research, 1974, 15: 173–179.

    Article  Google Scholar 

  29. Hansen U N. Modeling of Bone Microcracking. NAFEMS world Congress, Newport, RI, 1999.

  30. Bonfield W, Datta P K. Fracture Toughness of Compact Bone. Journal of Biomechanics, 1976, 9: 131–134.

    Article  Google Scholar 

  31. Zioupos P, Currey J D, Sedman A J. An Examination of the Micromechanics of Failure of Bone and Antler by Acoustic Emission Tests and Laser Scanning Confocal Microscopy. Medical Engineering & Physics, 1994, 16: 203–212.

    Article  Google Scholar 

  32. Kitchener A C, Vincent J F V. Composite Theory and the Effect of Water on the Stiffness of Horn Keratin. Journal of Materials Science, 1987, 22: 1385–1389.

    Article  Google Scholar 

  33. Grubb D T, Jelinski L W. Fiber Morphology of Spider Silk: the Effects of Tensile Deformation. Macromolecules, 1997, 30: 2860–2867.

    Article  Google Scholar 

  34. Simmons A H, Michael C A, Jelinski L W. Molecular Orientation and Two-component Crystalline Fraction of Spider Dragline Silk. Science, 1996, 271: 84–87.

    Article  Google Scholar 

  35. Gosline J M, DeMont M E, Denny M W. The Structure and Properties of Spider Silk. Endeavour, 1986, 10: 37–43.

    Article  Google Scholar 

  36. Liivak O, Blye A, Shah N, Jelinski L W. A Microfabricated Wet-spinning Apparatus to Spin Fibers of Silk Proteins Structure-property Correlations. Macromolecules, 1998, 31: 2947–2951.

    Article  Google Scholar 

  37. Volpin D, Ciferri A. Thermoelasticity of Elastin. Nature, 1970, 225: 382.

    Article  Google Scholar 

  38. Hoeve C A J, Flory P J. The Elastic Properties of Elastin. Biopolymers, 1974, 13: 677–686.

    Article  Google Scholar 

  39. Dorrington K L, McCrum N G. Elastin as a Rubber. Biopolymers, 1977, 16: 1201–1222.

    Article  Google Scholar 

  40. Weis-Fogh T, Andersen S O. New Molecular Model for the Long-range Elasticity of Elastin. Nature, 1970, 227: 718–721.

    Article  Google Scholar 

  41. Gosline J M. The Elastic Properties of Rubber-like Proteins and Highly Extensible Tissues. The Society for Experimental Biology Symposium, 1980, 34: 331–357.

    Google Scholar 

  42. Gray W R, Sandberg L B, Foster J A. Molecular Model for Elastic Structure and Function. Nature, 1973, 240: 461–466.

    Article  Google Scholar 

  43. Urry D W. What is Elastin; what is not. Ultrastructural Pathology, 1983, 4: 227–251.

    Article  Google Scholar 

  44. Andersen S O, Weis-Fogh T. Resilin, a Rubber-like Protein in Arthropod Cuticle. Advances in Insect Physiology, 1964, 2: 1–65.

    Article  Google Scholar 

  45. Ardell D H, Andersen S O. Tentative Identification of a Resilin Gene in Drosophila Melanogaster. Insect Biochemistry and Molecular Biology, 2001, 31: 965–970.

    Article  Google Scholar 

  46. Paillet M, Dufresne A. Chitin Whisker Reinforced Thermoplastic Nanocomposites. Macromolecules, 2001, 34: 6527–6530.

    Article  Google Scholar 

  47. Atkins E D T. Conformations in Polysaccharides and Complex Carbohydrates. Proc Int Symp Biomol Struct Interactions, Suppl J Biosci, 1985, 8: 375–387.

    Google Scholar 

  48. Blackwell J, Weih M A. Structure of Chitin Protein Complexes: Ovipositor of the Ichneumon Fly Megarrhyssa. Journal of Molecular Biology, 1980, 137: 49–60.

    Article  Google Scholar 

  49. Murray S B, Neville A C. The Role of the Electrostatic Coat in the Formation of Cholesteric Liquid Crystal Spherulites from Alpha-chitin. International Journal of Biological Macromolecules, 1997, 20: 123–130.

    Article  Google Scholar 

  50. Murray S B, Neville A C. The Role of pH, Temperature and Nucleation in the Formation of Cholesteric Liquid Crystal Spherulites from Chitin and Chitosan. International Journal of Biological Macromolecules, 1998, 22: 137–144.

    Article  Google Scholar 

  51. Fraenkel G, Rudall K M. The Structure of Insect Cuticles. Proceedings of the Royal Society B, 1947, 134: 111–143.

    Article  Google Scholar 

  52. Ker R F. Some Structural and Mechanical Properties of Locust and Beetle Cuticle. PhD Thesis, University of Oxford, 1977.

    Google Scholar 

  53. Gunderson S L, Whitney J P. Insect Cuticle Microstructure and Its Applications to Advanced Composites. Biomimetics, 1992, 1: 177–197.

    Google Scholar 

  54. Attenburrow G E, Davies A P, Goodband R M, Ingman S J. The Fracture Behaviour of Starch and Gluten in the Starchy State. Journal of Cereal Science, 1992, 16: 1–12.

    Article  Google Scholar 

  55. Reynolds S E. The Mechanical Properties of the Abdominal Cuticle of Rhodnius Larvae. Journal of Experimental Biology, 1975, 62: 69–80.

    Google Scholar 

  56. Charlton A J, Baxter N J, Khan M L, Moir A J G, Haslam E, Davies A P, Williamson M P. Polyphenol/peptide Binding and Precipitation. Journal of Agricultural and Food Chemistry, 2002, 50: 1593–1601.

    Article  Google Scholar 

  57. Guinard J X, Mazzucchelli R. The Sensory Perception of Texture and Mouthfeel. Trends in Food Science and Technology, 1996, 7: 213–219.

    Article  Google Scholar 

  58. Pryor, M G M. On the Hardening of the Ootheca of B latta Orientalis. Proceedings of the Royal Society B, 1940, 128: 378–398.

    Article  Google Scholar 

  59. Vincent J F V, Ablett S. Hydration and Tanning in Insect Cuticle. Journal of Insect Physiology, 1988, 33: 973–979.

    Article  Google Scholar 

  60. Hillerton J E, Vincent J F V. The Stabilisation of Insect Cuticles. Journal of Insect Physiology, 1979, 25: 957–963.

    Article  Google Scholar 

  61. Wake J H. Nature’s Underwater Adhesive Specialist. International Journal of Adhesion & Adhesives, 1987, 7: 9–14.

    Article  Google Scholar 

  62. Holl S M, Hansen D, Waite J H, Schaefer J. Solid-state NMR Analysis of Cross-linking in Mussel Protein Glue. Archives of Biochemistry and Biophysics, 1993, 302: 255–258.

    Article  Google Scholar 

  63. Wainwright S A, Biggs W D, Currey J D, Gosline J M. The Mechanical Design of Organisms. Arnold, London, 1976.

    Google Scholar 

  64. Clark R B. Dynamics in Metazoan Evolution. The Origin of the Coelom and Segments. Clarendon Press, Oxford, 1964.

    Google Scholar 

  65. Gibson T, Stark H, Kenedi R M. The Significance of Langer’s Lines, 1971.

  66. Purslow P P, Bigi A, Ripamonte A, Roveri N. Collagen Fibre Reorientation Around a Crack in Biaxially Stretched Aortic Media. International Journal of Biological Macromolecules, 1984, 6: 21–25.

    Article  Google Scholar 

  67. Mai Y-M, Atkins A G. Further Comments on J-shaped Stress-strain Curves and the Crack Resistance of Biological Materials. Journal of Physics D– Applied Physics, 1989, 22: 48–54.

    Article  Google Scholar 

  68. Purslow P P. Notch-sensitivity of Non-linear Materials. Journal of Materials Science, 1991, 26: 4468–4476.

    Article  Google Scholar 

  69. Ker R F, Wang X T, Pike A V L. Fatigue Quality of Mammalian Tendons. Journal of Experimental Biology, 2000, 203: 1317–1327.

    Google Scholar 

  70. Hansell M H. Animal Architecture and Building Behaviour. Longman, London, 1984.

    Google Scholar 

  71. Heinrich B. The Hot-blooded Insects: Strategies and Mechanisms of Thermoregulation. Springer, Berlin & London, 1993.

    Book  Google Scholar 

  72. Frisch, K V. Animal Architecture. Hutchinson, London, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian F. V. Vincent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincent, J.F.V. Making biological materials. J Bionic Eng 2, 209–237 (2005). https://doi.org/10.1007/BF03399498

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03399498

Navigation