Skip to main content
Log in

Climatic changes and the potential future importance of maize diseases: a short review

  • Review
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

This mini-review summarizes the existing knowledge and hypotheses on the potential changes to the future importance of maize diseases due to projected global climatic changes. In contrast to fungal pathogens, there is almost no information available on viral and bacterial diseases. Most studies related to fungi refer to Aspergillus and Fusarium species, which are causal agents of maize ear rot, and the related risk of mycotoxin contamination of maize grain, potentially harmful to animals and humans. Just a single long-term simulation study based on a modelling approach driven by a climate change scenario has been reported for a maize disease so far. It projects a reduced risk of Puccinia polysora (southern rust) occurrence in Brazil in this century. More simulation studies, ideally those which also generate quantitative disease-yield loss data for different maize diseases and locations are certainly needed in order to include the future potential disease risk in maize to the climate change debate. This will enable the estimation of the future maize productivity based on both abiotic factors such as temperature and biotic factors such as diseases. A fundamental conclusion of this mini-review is that global maize disease problems caused by a changing climate will probably not consistently worsen, because climatic changes may also improve the crop health situation in maize depending on the disease, location and time scale considered, although ear rots and associated mycotoxin contamination of maize grain are expected to increase in many countries worldwide. Reducing ear rot disease risk is already of high priority and will likely demand particular attention in the future as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes AP, Wreford A, Butterworth MH, Semenov MA, Moran D, Evans N & Fitt BDL, 2010. Adaptation to increasing severity of phoma stem canker on winter oilseed rape in the UK under climate change. J Agric Sci 148, 683–694.

    Article  Google Scholar 

  • Bender J & Weigel HJ, 2011. Changes in atmospheric chemistry and crop health: A review. Agron Sustain Dev 31, 81–89.

    Article  CAS  Google Scholar 

  • Boland GJ, Melzer MS, Hopkin A, Higgins V & Nassuth A, 2004. Climate change and plant diseases in Ontario. Can J Plant Pathol 26, 335–350.

    Article  Google Scholar 

  • Boonekamp PM, 2012. Are plant diseases too much ignored in the climate change debate? Eur J Plant Pathol 133, 291–294.

    Article  Google Scholar 

  • Cairns JE, Sonder K, Zaidi PH, Verhulst N, Mahuku G, Babu R, Nair SK, Das B, Govaerts B, Vinayan MT, Rashid Z, Noor JJ, Devi P, San Vicente F & Prasanna BM, 2012. Maize production in a changing climate: impacts, adaptations, and mitigation strategies. Adv Agron 114, 1–58.

    Article  CAS  Google Scholar 

  • Campos H, Cooper M, Habben JE, Edmeades GO & Schussler JR, 2004. Improving drought tolerance in maize: a view from industry. Field Crops Res 90, 19–34.

    Article  Google Scholar 

  • Canto T, Aranda MA & Fereres A, 2009. Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran-borne plant viruses. Global Change Biol 15, 1884–1894.

    Article  Google Scholar 

  • Chakraborty S & Newton AC, 2011. Climate change, plant diseases and food security: an overview. Plant Pathol 60, 2–14.

    Article  Google Scholar 

  • Chakraborty S, Tiedemann A von & Teng PS, 2000. Climate change: potential impact on plant diseases. Environ Pollut 108, 317–326.

    Article  CAS  PubMed  Google Scholar 

  • Chancellor T & Kubiriba J, 2006. The effects of climate change on infectious diseases of plants. Foresight project ‘Infectious diseases: preparing for the future’. Department of Trade and Industry, UK Government.

    Google Scholar 

  • Chmielewski FM, Müller A & Bruns E, 2004. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric Forest Meteorol 121, 69–78.

    Article  Google Scholar 

  • Chipanshi AC, Chanda R & Totolo O, 2003. Vulnerability assessment of the maize and sorghum crops to climate change in Botswana. Climatic Change 61, 339–360.

    Article  Google Scholar 

  • Coakley SM, Scherm H & Chakraborty S, 1999. Climate change and plant disease management. Ann Rev Phytopathol 37, 399–426.

    Article  CAS  Google Scholar 

  • CIMMYT Maize Program, 2004. Maize Diseases: A Guide for Field Identification. Mexico, D.F.: CIMMYT.

    Google Scholar 

  • De Wolf ED & Isard SA, 2007. Disease cycle approach to plant disease prediction. Ann Rev Phytopathol 45, 203–220.

    Article  Google Scholar 

  • Dixon RK, Smith J & Guill S, 2003. Life on the edge: Vulnerability and adaptation of African ecosystems to global climate change. Mitig Adapt Strat Glob Change 8, 93–113.

    Article  Google Scholar 

  • Eastburn DM, McElrone AJ & Bilgin DD, 2011. Influence of atmospheric and climatic change on plant-pathogen interactions. Plant Pathol 60, 54–69.

    Article  Google Scholar 

  • Ewert F, 2012. Adaptation: Opportunities in climate change? Nat Climate Change 2, 153–154.

    Article  Google Scholar 

  • FAO, 2012. Food and Agriculture Organisation of the United Nations, FAOSTAT, FAO Statistics Division http://faostat.fao.org/site/567/default.aspx#ancor.

    Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN & Travers SE, 2006. Climate change effects on plant disease: genomes to ecosystems. Ann Rev Phytopathol 44, 489–509.

    Article  CAS  Google Scholar 

  • Garrett KA, Jumpponen A, Toomajian C & Gomez-Montano L, 2012. Climate change and plant health: designing research spillover from plant genomics for understanding the role of microbial communities. Can J Plant Pathol 34, 349–361.

    Article  Google Scholar 

  • Ghini R, Hamada E, Angelotti F, Costa LB & Bettiol W, 2012. Research approaches, adaptation strategies, and knowledge gaps concerning the impacts of climate change on plant diseases. Trop Plant Pathol 37, 5–24.

    Google Scholar 

  • Goudriaan J & Zadoks JC, 1995. Global climate change: modelling the potential responses of agro-ecosystems with special reference to crop protection. Environ Pollut 87, 215–224.

    Article  CAS  PubMed  Google Scholar 

  • Habekuß A, Riedel C, Schliephake E & Ordon F, 2009. Breeding for resistance to insect-transmitted viruses in barley - an emerging challenge due to global warming. J Kulturpflanzen 61, 53–61.

    Google Scholar 

  • Hakala K, Hannukkala AO, Huusela-Veistola E, Jalli M & Peltonen-Sainio P, 2011. Pests and diseases in a changing climate: a major challenge for Finish crop production. Agric Food Sci 20, 3–14.

    Article  Google Scholar 

  • Huang YJ, Evans N, Li ZQ, Eckert M, Chevre AM, Renard M & Fitt BDL, 2006. Temperature and leaf wetness duration affect phenotypic expression of Rlm6-mediated resistance to Leptosphaeria maculans in Brassica napus. New Phytol 170, 129–141.

    Article  PubMed  Google Scholar 

  • Jeger MJ & Pautasso M, 2008. Plant disease and global change - the importance of long-term data sets. New Phytol 177, 8–11.

    Article  PubMed  Google Scholar 

  • Juroszek P & Tiedemann A von, 2011. Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol 60, 100–112.

    Article  Google Scholar 

  • Juroszek P & Tiedemann A von, 2013a. Plant diseases, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts. J Agric Sci 151, 163–188.

    Article  Google Scholar 

  • Juroszek P & Tiedemann A von, 2013b. Climate change and potential future risks through wheat diseases: a review. Eur J Plant Pathol 136, 21–33.

    Article  Google Scholar 

  • Karlovsky P, 2011. Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Appl Microbiol Biotechno 91, 491–504.

    Article  CAS  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falco WP & Naylor RL, 2008. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607–610.

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Schlenker W & Costa-Roberts J, 2011. Climate trends and global crop production since 1980. Science 333, 616–620.

    Article  CAS  PubMed  Google Scholar 

  • Madgwick JW, West JS, White RP, Semenov MA, Townsend JA, Turner JA & Fitt BDL, 2011. Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. Eur J Plant Pathol 130, 117–131.

    Article  Google Scholar 

  • Magan N, Medina A & Aldred D, 2011. Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol 60, 150–163.

    Article  CAS  Google Scholar 

  • Manning WJ & Tiedemann A von, 1995. Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88, 219–245.

    Article  CAS  PubMed  Google Scholar 

  • Mboup M, Bahri B, Leconte M, De Vallavieille-Pope C, Kaltz O & Enjalbert J, 2012. Genetic structure and local adaptation of European wheat yellow rust populations: the role of temperature-specific adaptation. Evol Appl 5, 341–352.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moraes WB, Peixoto LD, Jesus Junior WC, Moraes WB & Cecilio RA, 2011. Impacts of climate change on the risk on occurrence of the southern corn rust of the maize in Brasil. Enciclopedia Biosfera 7, 1–12. In Portuguese with English abstract.

    Google Scholar 

  • Oerke EC, 2006. Crop losses to pests. J Agric Sci 144, 31–43.

    Article  Google Scholar 

  • Oldenburger E, Manderscheid R, Erbs M & Weigel HJ, 2009. Interaction of free air carbon dioxide enrichment (FACE) and controlled summer drought on fungal infections of maize. In: Feldmann F., Alford DV, Furks C (Eds.) 2009: Crop Plant Resistance to Biotic and Abiotic Factors: Current Potential and Future Demands. DPG Selbstverlag, Braunschweig, 75–83.

    Google Scholar 

  • Pangga IB, Hanan J & Chakraborty S, 2013. Climate change impacts on plant canopy architecture: Implications for pest and pathogen management. Eur J Plant Pathol 135, 595–610.

    Article  Google Scholar 

  • Paterson RRM & Lima N, 2010. How will climate change affect mycotoxins in food? Food Res Internat 43, 1902–1914.

    Article  CAS  Google Scholar 

  • Paul PA & Munkvold GP, 2005. Regression and artificial neutral network modeling for the prediction of gray leaf spot of maize. Phytopathol 94, 1350–1357.

    Article  Google Scholar 

  • Pautasso M, Döring TF, Garbelotto M, Pellis L & Jeger MJ, 2012. Impacts of climate change on plant diseases - opinions and trends. Eur J Plant Pathol 133, 295–313.

    Article  Google Scholar 

  • Reynaud B, Delatte H, Peterschmitt M & Fargette D, 2009. Effects of temperature increase on the epidemiology of three major vector-borne viruses. Eur J Plant Pathol 123, 269–280.

    Article  Google Scholar 

  • Richerzhagen D, Racca P, Zeuner T, Kuhn C, Falke K, Kleinhenz B & Hau B, 2011. Impact of climate change on the temporal and regional occurrence of Cercospora leaf spot in Lower Saxony. J Plant Dis Protec 118, 168–177.

    Article  Google Scholar 

  • Roos J, Hopkins R, Kvarnheden A & Dixelius C, 2011. The impact of global warming on plant diseases and insect vectors in Sweden. Eur J Plant Pathol 129, 9–19.

    Article  Google Scholar 

  • Savary S, Nelson A, Sparks AH, Willocquet L, Duveiller E, Mahuku G, Forbes G, Garrett KA, Hodson D, Padgham J, Pande S, Sharma M, Yuen J & Djurle A, 2011. International Agricultural Research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Dis 95, 1204–1216.

    Article  Google Scholar 

  • Shaw MW & Osborne TM, 2011. Geographic distribution of plant pathogens in response to climate change. Plant Pathol 60, 31–43.

    Article  Google Scholar 

  • Siebold M & Tiedemann A von, 2013. Effects of experimental warming on fungal disease progress in oilseed rape. Global Change Biol, published online 25 March 2013 (DOI: 10. 1111/gcb.12180).

    Google Scholar 

  • Siebold M & Tiedemann A von, 2012a. Potential effects of global warming on oilseed rape pathogens in Northern Germany. Fung Ecol 5, 62–72.

    Article  Google Scholar 

  • Siebold M & Tiedemann A von, 2012b. Application of a robust experimental method to study soil warming effects on oilseed rape. Agric Forest Meteorol 164, 20–28.

    Article  Google Scholar 

  • Sudakin DL, 2003. Trichothecenes in the environment: relevance to human health. Toxicol Letters 143, 97–107.

    Article  CAS  Google Scholar 

  • Sutherst RW, Constable F, Finlay KJ, Harrington R, Luck J & Zalucki MP, 2011. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdisciplinary Rev — Climate Change 2, 220–237.

    Article  Google Scholar 

  • Tiedemann A von & Ulber B, 2008. Verändertes Auftreten von Krankheiten und Schädlingen durch Klimaschwankungen. In Pflanzenproduktion im Wandel — Wandel im Pflanzenschutz. In: Tiedemann A von, Heitefuss R, Feldmann F (Eds.) 2008: DPG Selbstverlag, Braunschweig, 79–89. In German.

    Google Scholar 

  • Tiedemann A von, 1996. Global atmospheric and climatic change — what are the implications for plant protection? Nachrichtenbl Deut Pflanzenschutzd 48, 73–79. In German with English abstract.

    Google Scholar 

  • United Nations, 2011. World Population Prospects: The 2010 revision. United Nations, Department of Economic and Social Affairs, Population Division, New York. http://esa.un.org/unpd/wpp/Analytical-Figures/htm/fig_1.htm.

    Google Scholar 

  • West JS, Townsend JA, Stevens M & Fitt BDL, 2012. Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. Eur J Plant Pathol 133, 315–331.

    Article  Google Scholar 

  • White JW, Hoogenboom G, Kimball BA & Wall GW, 2011. Methodologies for simulating impacts of climate change on crop production. Field Crops Res 124, 357–368.

    Article  Google Scholar 

  • Wild CP & Gong YY, 2010. Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 31, 71–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Bhatnagar D, Bui-Klimke T, Carbone I, Hellmich R, Munkvold G, Paul P, Payne G & Takle E, 2011. Climate change impacts on mycotoxin risk in US maize. World Mycotox J 4, 79–93.

    Article  CAS  Google Scholar 

  • Zhan J & McDonald BA, 2011. Thermal adaptation in the fungal pathogen Mycosphaerella graminicola. Mol Ecol 20, 1689–1701.

    Article  PubMed  Google Scholar 

  • Zinedine A, Soriano JM, Molto JC & Manes J, 2007. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem Toxicol 45, 1–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Juroszek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juroszek, P., Tiedemann, A.v. Climatic changes and the potential future importance of maize diseases: a short review. J Plant Dis Prot 120, 49–56 (2013). https://doi.org/10.1007/BF03356454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356454

Keywords

Navigation