Skip to main content
Log in

Linking Plant Disease Models to Climate Change Scenarios to Project Future Risks of Crop Diseases: A Review

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The objective of this review is to summarize and evaluate disease risk simulation studies, where crop disease models have been linked to climate projections derived from one or several global circulation models. Altogether, 70 single crop disease risk simulation studies were analyzed which meet this criterion. These studies refer to about 35 plant diseases in 15 different agricultural crops, whereby wheat (especially the diseases fusarium head blight, leaf rust, and septoria tritici blotch) was most often investigated followed by grapevine (especially the disease downy mildew) and oilseed rape (especially the disease phoma stem canker). Most studies refer to Brazil and different Western European countries (e.g. France, Germany, Italy, and United Kingdom). Few considered the entire globe. Interestingly, in about 40% of the studies, disease risk is projected to remain unchanged (seven cases) or to be reduced (22 cases) in the future, particularly in Brazil at the end of the 21st century, mainly due to supra-optimal temperature conditions for the development of some pathogens during the growing season and/or reduced rainfall and leaf wetness, respectively. However, survival of most pathogens, particularly under temperate climatic conditions, during winter-time is projected to be favoured in most simulation studies due to warming. These results suggest that projections of future pathogen/disease dynamics and ranges should include several climatic factors and several pathogen/disease life cycle stages to be more reliable. Only in three of the disease risk simulation studies an option for agronomic adaptation (timing of sowing, cultivar choice) is included in the model runs. Such approaches are particularly valuable because they comprise future options to manage disease risks and minimise potentially adverse effects on crop yield. Therefore, basic tools of the IPM toolbox should be included in disease risk simulation studies in order to take their potential disease risk mitigation capacity into account, which is particularly relevant where crop disease risk is projected to increase in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves MC, Carvalho LG, Pozza EA, Sanches L & Maia JCS, 2011. Ecological zoning of soybean rust, coffee rust and banana black sigatoka based on Brazilian climate changes. Procedia Environ Sci 6, 35–49.

    Article  Google Scholar 

  • Baker RHA, Sansford CE, Jarvis CH, Cannon, RJC, MacLeod A & Walters KFA, 2000. The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climate. Agric Ecosyst Environ 82, 57–71.

    Article  Google Scholar 

  • Bancal MO & Gate P, 2011. Climate change and the wheat crop: the main impacts. In: Brisson N, Levrault F (Eds.) Climate change, agriculture and forests in France: simulations of the impacts on the main species. The Green Book of the CLIMATOR project (2007–2010), part C (The crops), section C2 Wheat, ADEME, 155–162.

    Google Scholar 

  • Barnes AP, Wreford A, Butterworth MH, Semenov MA, Moran D, Evans N & Fitt BDL, 2010. Adaptation to increasing severity of phoma stem canker on winter oilseed rape in the UK under climate change. J Agric Sci 148, 683–694.

    Article  Google Scholar 

  • Bregaglio S, Donatelli M & Confalonieri R, 2013. Fungal infections of rice, wheat, and grape in Europe in 2030–2050. Agron Sustain Dev 33, 767–776.

    Article  Google Scholar 

  • Butterworth MH, Semenov MA, Barnes A, Moran D, West JS & Fitt BDL, 2010. North-south divide: contrasting impacts of climate change on crop yields in Scotland and England. J R Soc Interface 7, 123–130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caffarra A, Rinaldi M, Eccel E, Rossi V & Pertot I, 2012. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric Ecosyst Environ 148, 89–101.

    Article  Google Scholar 

  • Chakraborty S, Tiedemann A v & Teng PS, 2000. Climate change: potential impact on plant diseases. Environ Pollut 108, 317–326.

    Article  CAS  PubMed  Google Scholar 

  • Coakley SM, Scherm H & Chakraborty S, 1999. Climate change and plant disease management. Ann Rev Phytopathol 37, 399–426.

    Article  CAS  Google Scholar 

  • Elad Y & Pertot I, 2014. Climate change impacts on plant pathogens and plant diseases. J Crop Improv 28, 99–139.

    Article  CAS  Google Scholar 

  • Evans N, Butterworth MH, Baierl A, Semenov MA, West JS, Barnes A, Moran D & Fitt BDL 2010. The impact of climate change on disease constraints on production of oilseed rape. Food Sec 2, 143–156.

    Article  Google Scholar 

  • Evans N, Baierl A, Semenov MA, Gladders P & Fitt BDL, 2008. Range and severity of a plant disease increased by global warming. J R Soc Interface 5, 525–531.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes JM, Cunha GR, Del Ponte E, Pavan W, Pires JL, Baethgen W, Gimenez A, Margin G & Travasso MI, 2004. Modeling fusarium ear blight in wheat under climate change using linked process-based models. In: Proceedings of the 2nd International Symposium on Fusarium Head Blight, incorporating the 8th European Fusarium Seminar, 11–15 Dec 2004, Orlando, USA, 441–443.

    Google Scholar 

  • Garrett KA, Forbes GA, Savary S, Skelsey P, Sparks AH, Valdivia C, van Bruggen AHC, Willocquet L, Djurle A, Duveiller E, Eckersten H, Pande S, Vera Cruz C & Yuen J, 2011. Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathol 60, 15–30.

    Article  Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN & Travers SE, 2006. Climate change effects on plant disease: genomes to ecosystems. Ann Rev Phytopathol 44, 489–509.

    Article  CAS  Google Scholar 

  • Ghini R, Hamada E, Goncalves RRV, Gasparotto L & Pereira JCR, 2007. Risk analysis of climatic change on black Sigatoka on banana in Brazil. Fitopatol Bras 32, 197–204. In Portuguese with English abstract.

    Article  Google Scholar 

  • Ghini R, Hamada E, Junior MJP & Goncalves RRV, 2011. Incubation period of Hemileia vastatrix in coffee plants in Brazil simulated under climate change. Summa Phytopathol 37, 85–93.

    Article  Google Scholar 

  • Gouache D, Bensadoun A, Brun F, Page C, Makowski D & Wallach D, 2013. Modelling climate change impact on Septoria tritici blotch (STB) in France: Accounting for climate model and disease uncertainty. Agric For Meteorol 170, 242–252.

    Article  Google Scholar 

  • Gouache D, Roche R, Pieri P & Bancal MO, 2011. Evolution of some pathosystems on wheat and vines. In: Brisson N, Levrault F (Eds.) Climate change, agriculture and forests in France: simulations of the impacts on the main species. The Green Book of the CLIMATOR project (2007–2010), part C (The crops), section B5 Health, ADEME, 113–126.

    Google Scholar 

  • Hirschi M, Stoeckli S, Dubrovsky M, Spirig C, Calanca P, Rotach MW, Fischer AM, Duffy B & Samietz J, 2011. Down-scaling climate change scenarios for apple pest and disease modelling in Switzerland. Earth Syst Dyn Dissuss 2, 493–529.

    Article  Google Scholar 

  • Jesus Junior WC, Valadares Junior R, Cecilio RA, Moraes WB, Vale FXR, Alves FR & Paul PA, 2008. Worldwide geographical distribution of black sigatoka for banana: predictions based on climate change models. Sci Agric 65, 40–53.

    Article  Google Scholar 

  • Jones RAC & Barbetti MJ, 2012. Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CAB Rev 7, No. 022, 31 pp.

  • Juroszek P & Tiedemann A v, 2013a. Plant diseases, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts. J Agric Sci 151, 163–188.

    Article  Google Scholar 

  • Juroszek P & Tiedemann A v, 2013b. Climate change and potential future risks through wheat diseases: a review. Eur J Plant Pathol 136, 21–33.

    Article  Google Scholar 

  • Juroszek P & Tiedemann A v, 2013c. Climatic changes and the future importance of maize diseases: a short review. J Plant Dis Protect 120, 49–56.

    Google Scholar 

  • Juroszek P & Tiedemann A v, 2011. Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol 60, 100–112.

    Article  Google Scholar 

  • KLIFF-Crop Production: Climate Change Impact and Adaptation Research in Lower Saxony, Germany, http://www.kliff-niedersachsen.de.vweb5-test.gwdg.de/?page_id=21, in German (KLIFF Flyer in English available).

  • Krengel S, Klocke B, Seidel P & Freier B, 2014. Changes in the occurrence of plant diseases, pests and their natural enemies. In: Lozan JL, Grassel H, Karbe L & Jendritzky (Hrsg.). Warnsignal Klima: Gefahren für Pflanzen, Tiere und Menschen. 2. Auflage, Elektronische Veröffentlichung (Kap. 4.3) - (www.warnsignale.uni-hamburg.de). In German with English abstract.

    Google Scholar 

  • Lalic B, Jankovic D & Ninkov M, 2013. Assessment of climate change impact on downy mildew appearance in Serbia using ECHAM5 climate model outputs. Proceedings of the Conference Environmental Changes and Adaptation Strategies, Skalica, Slovakia, 9–11 September 2013, 4 pp.

    Google Scholar 

  • Launay M, Caubel J, Bourgeois G, Huard F, Cortazar-Atauri IG, Bancal MO & Brisson N, 2014. Climatic indicators for crop infection risk: Application to climate change impacts on five major foliar diseases in Northern France. Agric Ecosyst Environ 197, 147–158.

    Article  Google Scholar 

  • Luo Y, TeBeest DO, Teng PS & Fabellar NG, 1995. Simulation studies on risk analysis of rice blast epidemics associated with global climate change in several Asian countries. J Biogeogr 22, 673–678.

    Article  Google Scholar 

  • Madgwick JW, West JS, White RP, Semenov MA, Townsend JA, Turner JA & Fitt BDL, 2011. Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. Eur J Plant Pathol 130, 117–131.

    Article  Google Scholar 

  • Manici LM, Bregglio S & Fumagalli D, 2014. Modelling soil borne fungal pathogens of arable crops under climate change. Int J Biometeorol, published online 14 March 2014 (DOI: 10.1007/s00484-014-0808-6).

    Google Scholar 

  • Melloy P, Hollaway G, Luck J, Norton R, Aitken E & Chakraborty S, 2010. Production and fitness of Fusarium pseudograminearum inoculum at elevated carbon dioxide in FACE. Global Change Biol. 16, 3363–3373.

    Article  Google Scholar 

  • Moraes WB, Jesus Junior WC, Peixoto LA, Moraes WB, Furtado EL, Silva L, Cecilio RA & Alves FR, 2012a. An analysis of the risk of cocoa moniliasis occurrence in Brazil as the result of climate change. Summa Phytopathol 38, 30–35.

    Google Scholar 

  • Moraes WB, Jesus Junior WC, Peixoto LA, Moraes WB, Coser SM & Alves FR, 2012b. Impact of climate change on the phoma leaf spot of coffee in Brazil. Interciencia 37, 272–278.

    Google Scholar 

  • Moraes WB, Peixoto LD, Jesus Junior WC, Moraes WB & Cecilio RA, 2011. Impacts of climate change on the risk on occurrence of the southern corn rust of the maize in Brasil Enciclop Biosf 7, 1–12. In Portuguese with English abstract.

    Google Scholar 

  • Olesen JE, Trnka M, Kersebaum KC, Skjelvag AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J & Micale F, 2011. Impacts and adaptation of European crop production systems to climate change. Eur J Agronomy 34, 96–112.

    Article  Google Scholar 

  • Pautasso M, D öring TF, Garbelotto M, Pellis L & Jeger MJ, 2012. Impacts of climate change on plant diseases — opinions and trends. Eur J Plant Pathol 133, 295–313.

    Article  Google Scholar 

  • Racca P, Kleinhenz B, Hau B & Kuhn C, 2013a. Einfluss des Klimawandels auf das Erstauftreten der Blattkrankheiten Cercospora (Cercospora beticola), Mehltau (Erysiphe betae), Rost (Uromyces betae) und Ramularia (Ramularia beticola) in Zuckerrübenanbauregionen in Niedersachsen. KLIFF Klimafolgenforschung in Niedersachsen. Vom globalen Klimawandel zu regionalen Anpassungsstrategien, 02–03 September 2013, Georg-August-Universitàt, Göttingen, Deutschland, 110–111. In German.

    Google Scholar 

  • Racca P, Kleinhenz B, Hau B & Kuhn C, 2013b. Einfluss des Klimawandels auf die Ontogenese des Winterweizens und die Blattkrankheiten Mehltau (Blumeria graminis), Braun-rost (Puccinia triticina), DTR (Drechslera tritici-repentis) und Septoria (Septoria tritici) in ausgewàhlten Regionen in Niedersachsen. KLIFF Klimafolgenforschung in Niedersachsen. Vom globalen Klimawandel zu regionalen Anpassungsstrategien, 02–03 September 2013, Georg-August-Universitàt, Göttingen, Deutschland, 111–112. In German.

    Google Scholar 

  • Racca P, Richerzhagen D, Kuhn C, Kleinhenz B & Hau B, 2012. Impact of climate change on the ontogenetic development and on the leaf diseases powdery mildew, leaf rust and tan spot of winter wheat in Lower Saxony. Julius-Kühn-Archiv 438, 135–136. In German.

    Google Scholar 

  • Raymundo AD & Pangga IB, 2011. Simulation modeling of bunchy top epidemics in a changing climate. J Environ Sci Management 14, 13–20.

    Google Scholar 

  • Richerzhagen D, Racca P, Zeuner T, Kuhn C, Falke K, Kleinhenz B & Hau B, 2011. Impact of climate change on the temporal and regional occurrence of Cercospora leaf spot in Lower Saxony. J Plant Dis Prot 118, 168–177.

    Google Scholar 

  • Salam MU, MacLeod WJ, Salam KP, Maling T & Barbetti MJ, 2011. Impact of climate change in relation to ascochyta blight on field pea in Western Australia. Austral Plant Pathol 40, 397–406.

    Article  Google Scholar 

  • Salinari F, Giosue S, Rossi V, Tubiello FN, Rosenzweig C & Gullino ML, 2007. Downy mildew outbreaks on grapevine under climate change: elaboration and application of an empirical-statistical model. OEPP/EPPO Bulletin 37, 317–326.

    Article  Google Scholar 

  • Salinari F, Giosue S, Tubiello FN, Rettori A, Rossi V, Spanna F, Rosenzweig C & Gullino ML, 2006. Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Global Change Biol 12, 1299–1307.

    Article  Google Scholar 

  • Seidel P, 2014. Extreme weather and influences on plant pests: extreme knowledge gaps. Ges Pflanz 66, 83–92. In German with English abstract.

    Article  Google Scholar 

  • Shabani F & Kumar L, 2013. Risk levels of invasive Fusarium oxysporum f. sp. in areas suitable for date palm (Phoenix dactylifera) cultivation under various climate change projections. PLOS ONE 8, e83404 (DOI:10.1371/journal.pone.0083404).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw MW, 2009. Preparing for changes in plant disease due to climate change. Plant Protec Sci, 45, Special Issue, S3–S10.

    Google Scholar 

  • Siebold M & Tiedemann A v, 2013. Effects of experimental warming on fungal disease progress in oilseed rape. Global Change Biol 6, 1736–1747.

    Article  Google Scholar 

  • Siebold M & Tiedemann A v, 2012. Potential effects of global warming on oilseed rape pathogens in Northern Germany. Fung Ecol 5, 62–72.

    Article  Google Scholar 

  • Sierra J, Brisson N, Ripoche D & Deque M, 2010. Modelling the impact of thermal adaptation of soil microorganisms and crop system on the dynamics of organic matter in a tropical soil under a climate change scenario. Ecol Modelling 221, 2850–2858.

    Article  CAS  Google Scholar 

  • Sparks AH, Forbes GA, Hijmans RJ & Garrett KA, 2014. Climate change may have limited effect on global risk of potato late blight. Global Change Biol 20, 3621–3631.

    Article  Google Scholar 

  • Srivastava A, Kumar SN & Aggarwal PK, 2010. Assessment of vulnerability of sorghum to climate change in India. Agric Ecosyst Environ 138, 160–169.

    Article  Google Scholar 

  • Strand JF, 2000. Some agrometeorological aspects of pest and disease management for the 21st century. Agric For Meteorol 103, 73–82.

    Article  Google Scholar 

  • Sutherst RW, Constable F, Finlay KJ, Harrington R, Luck J & Zalucki MP, 2011. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdisciplinary Rev: Climate Change 2, 220–237.

    Google Scholar 

  • Thompson SE, Levin S & Rodriquez-Iturbe I, 2014. Rainfall and temperature changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios. Global Change Biol 20, 1299–1312.

    Article  Google Scholar 

  • Tiedemann A v, 1996. Global atmospheric and climatic change - what are the implications for plant protection? Nachrichtenbl Deut Pflanzenschutzd 48, 73–79. In German with English abstract.

    Google Scholar 

  • Van der Fels-Klerx HJ, Goedhart PW, Elen O, Börjesson T, Hietaniemi V & Booij CJH, 2012. Modeling deoxynivalenol contamination of wheat in northwestern Europe for climate change assessments. J Food Protec 75, 1099–1106.

    Article  Google Scholar 

  • Van der Wals JE, Krüger K, Franke AC, Haverkort AJ & Steyn JM, 2013. Climate change and potato production in contrasting South African agro-ecosystems 3. Effects on relative development rates of selected pathogens and pests. Potato Res 56, 67–84.

    Article  Google Scholar 

  • Volk T, Epke K, Gerstner V, Leuthner C Rotterdam A, Johnen A & von Richthofen JS, 2010. Klimawandel in Nordrhein-Westfalen — Auswirkungen auf Schàdlinge und Pilzkrank-heiten wichtiger Ackerbaukulturen. Abschlussbericht, proPlant GmbH, Münster. In German.

    Google Scholar 

  • West JS, Townsend JA, Stevens M & Fitt BDL, 2012. Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. Eur J Plant Pathol 133, 315–331.

    Article  Google Scholar 

  • Weigel HJ, 2005. Healthy plants in the future: how does climate change affect crop production? Ges Pflanz 57, 6–17. In German with English abstract.

    Article  CAS  Google Scholar 

  • Wittchen U & Freier B, 2008. Use of data-series and simulation models for assessment of influence of climate change on the development of pests in agricultural crops. Nach-richtenbl Deut Pflanzenschutzd 60, 157–162. In German with English abstract.

    Google Scholar 

  • Wolfe DW, Ziska L, Petzoldt C, Seaman A, Chase L & Hayhoe K, 2008. Projected change in climate thresholds in the Northeastern U.S.: implications for crops, pests, livestock, and farmers. Mitig Adapt Strat Glob Change 13, 555–575.

    Article  Google Scholar 

  • Yamamura K & Yokozawa M, 2002. Prediction of a geographical shift in the prevalence of rice stripe virus disease transmitted by the small brown planthopper, Laodelphax striatellus (Fallen) (Hemiptera: Delphacidae), under global warming. Appl Entomol Zool 37, 181–190.

    Article  Google Scholar 

  • Zhang X, Halder J, White RP, Hughes DJ, Ye Z, Wang C, Xu R, Gan B & Fitt BDL, 2014. Climate change increases risk of fusarium ear blight on wheat in central China. Aspects Appl Biol 164, 384–395.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Juroszek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juroszek, P., von Tiedemann, A. Linking Plant Disease Models to Climate Change Scenarios to Project Future Risks of Crop Diseases: A Review. J Plant Dis Prot 122, 3–15 (2015). https://doi.org/10.1007/BF03356525

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356525

Key words

Navigation