Skip to main content
Log in

Antimicrobial activity of phosphites against different potato pathogens

Antimikrobielle Aktivität von Phosphiten gegenüber verschiedenen Kartoffelpathogenen

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Phosphites have low-toxicity on the environment and show high efficacy in controlling oomycete diseases in plants, both by a direct and an indirect mechanism. We have shown that they are also effective in reducing disease symptoms produced by Phytophthora infestans, Fusarium solani and Rhizoctonia solani when applied to potato seed tubers. To gain better insight into the direct mode of action of phosphites on different potato pathogens, and to ascertain chemical determinants in their direct antimicrobial activity, four potato pathogens were assayed with respect to sensitivity toward calcium, potassium and copper phosphites (CaPhi, KPhi and CuPhi, respectively). The influence of acidification and ionic strength changes after Phi addition on the antimicrobial activity, and the fungicidal or fungistatic activity, were evaluated. Results showed that phosphites were able to inhibit growth of all pathogens. Phytophthora infestans was the most inhibited pathogen by all phosphites, followed by Streptomyces scabies, while Rhizoctonia solani and Fusarium solani were less inhibited. CuPhi had the highest antimicrobial activity against the four pathogens analysed, and CaPhi and KPhi showed similar antimicrobial activities. Inhibitions by CuPhi and CaPhi could be partially explained by acidification of the media. However, results obtained with KPhi demonstrated that the phosphite anion has antimicrobial activity itself. The increase in ionic strength after Phi addition was not important in the antimicrobial activity of Phi. The activity of phosphites on germination of F. solani spores showed to be fungistatic rather than fungicidal.

Zusammenfassung

Phosphite besitzen eine geringe Umwelttoxizität sowie eine gute direkte und indirekte Wirkung gegenüber Oomyceten- Pathogenen von Pflanzen. Wir zeigen hier, dass sie ebenfalls die durch Phytophthora infestans, Fusarium solani and Rhizoctonia solani verursachten Symptome an Kartoffeln nach einer Knollenbehandlung vermindern. Vier Kartoffelpathogene wurden mit dem Ziel untersucht, die direkte Wirkungsweise von Calcium-, Kalium- und Kupfer-Phosphiten (CaPhi, KPhi und CuPhi) auf die Erreger sowie die chemischen Determinanten ihrer direkten antimikrobiellen Aktivität zu ermitteln. Weiterhin wurde die Wirkung von Azidifizierung und Ionenstärke nach Zugabe von Phosphiten auf antimikrobielle, fungizide und fungistatische Aktivität untersucht. Die Phosphite beeinträchtigten das Wachstum aller untersuchten Erreger. Phytophthora infestans wurde durch alle verwendeten Phosphite am stärksten inhibiert, gefolgt von Streptomyces scabies, während die Wirkung auf Rhizoctonia solani und Fusarium solani geringer war. CuPhi besaß die höchste antimikrobielle Aktivität gegenüber den vier untersuchten Pathogene, gefolgt von den ähnlich wirksamen CaPhi und KPhi. Die Wirkung von CuPhi und CaPhi kann zum Teil durch die Ansäuerung der verwendeten Medien erklärt werden. Die mit KPhi erhaltenen Ergebnisse zeigen dagegen, dass das Phosphit-Anion selbst antimikrobiell wirksam ist. Die Zunahme der Ionenstärke nach Phosphit-Applikation war nicht für die antimikrobielle Wirkung verantwortlich. Die Beeinträchtigung der Sporenkeimung von F. solani zeigte, dass die Wirkung der Phosphite eher fungistatisch als fungizid ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreu, A.B., M.G. Guevara, E.A. Wolski, G.R. Daleo, D.O. Caldiz, 2006: Enhancement of natural disease resistance in potatoes by chemicals. Pest Manag. Sci. 62, 162–170.

    Article  CAS  PubMed  Google Scholar 

  • Avis, T.J., M. Michaud, R.J. Tweddell, 2007: Role of lipid composition and lipid peroxidation in the sensitivity of fungal plant pathogens to aluminum chloride and sodium metabisulfite. Appl. Environ. Microbiol. 73, 2820–2824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan, B., Y. Levy, Y. Cohen, 1990: Variation in sensitivity of Phytophthora infestans to fosetyl-Al. Plant Pathol. 39, 134–140.

    Article  CAS  Google Scholar 

  • Bécot, S., E. Pajot, D. Le Corre, C. Monot, D. Silué, 2000: Phytogard® (K2HPO3) induces localized resistance in cauliflower to downy mildew of crucifers. Crop Prot. 19, 417–425.

    Article  Google Scholar 

  • Brown, S., S.T. Koike, O.E. Ochoa, F. Laemmlen, R.W. Michelmore, 2004: Insensitivity to the fungicide fosetyl-aluminum in California isolates of the lettuce downy mildew pathogen, Bremia lactucae. Plant Dis. 88, 502–508.

    Article  CAS  Google Scholar 

  • Caten, C.E., J.L. Jinks, 1968: Spontaneous variability of single isolates of Phytophthora infestans. I. Cultural variation. Can. J. Bot. 46, 329–348.

    Article  Google Scholar 

  • Cohen, Y., M.D. Coffey, 1986: Systemic fungicides and the control of oomycetes. Annu. Rev. Phytopathol. 24, 311–338.

    Article  CAS  Google Scholar 

  • Cooke, L.R., G. Little, 2002: The effect of foliar application of phosphonate formulations on the susceptibility of potato tubers to late blight. Pest Manag. Sci. 58, 17–25.

    Article  CAS  PubMed  Google Scholar 

  • Fenn, M.E., M.D. Coffey, 1984: Studies on the in vitro and in vivo antifungal activity of fosetyl-Al and phosphorous acid. Phytopathology 74, 606–611.

    Article  CAS  Google Scholar 

  • Garbelotto, M., T.Y. Harnik, D.J. Schmidt, 2009: Efficacy of phosphonic acid, metalaxyl-M and copper hydroxide against Phytophthora ramorum in vitro and in planta. Plant Pathol. 58, 111–119.

    Article  Google Scholar 

  • Guest, D., B. Grant, 1991: The complex action of phosphonates as antifungal agents. Biol. Rev. 66, 159–187.

    Article  Google Scholar 

  • Guest, D.I., G. Bompeix, 1990: The complex mode of action of phosphonates. Australas. Plant Pathol. 19, 113–115.

    Google Scholar 

  • Johnson, D.A., D.A. Inglis, J.S. Miller, 2004: Control of potato tuber rots caused by Oomycetes with foliar applications of phosphorous acid. Plant Dis. 88, 1153–1159.

    Article  CAS  Google Scholar 

  • Lobato, M.C., F.P. Olivieri, E.A. González Altamiranda, E.A. Wolski, G.R. Daleo, D.O. Caldiz, A.B. Andreu, 2008a: Phosphite compounds reduce disease severity in potato seed tubers and foliage. Eur. J. Plant Pathol. 122, 349–358.

    Article  CAS  Google Scholar 

  • Lobato, M.C., M. Machinandiarena, M.L. Feldman, G.R. Daleo, F.P. Olivieri, A.B. Andreu, 2008b: Efecto de la aplicación de fosfitos sobre la resistencia a enfermedades del cultivo de papa. Estudio de los mecanismos bioquímicos involucrados. XXIII Congreso de la Asociación Latinoamericana de papa, Mar del Plata, Argentina, 30 November–6 December 2008, 331–332.

    Google Scholar 

  • McDonald, A.E., B.R. Grant, W.C. Plaxton, 2001: Phosphite (phosphorous acid): its relevance in the environment and agriculture and influence on plant phosphate starvation response. J. Plant Nutr. 24, 1505–1519.

    Article  CAS  Google Scholar 

  • Mendieta, J.R., M.R. Pagano, F.F. Muñoz, G.R. Daleo, M.G. Guevara, 2006: Antimicrobial activity of potato aspartic proteases (StAPs) involves membrane permeabilization. Microbiology 152, 2039–2047.

    Article  CAS  PubMed  Google Scholar 

  • Mills, A.A.S., H.W. Platt, R.A.R. Hurta, 2004: Effect of salt compounds on mycelial growth, sporulation and spore germination of various potato pathogens. Postharvest Biol. Technol. 34, 341–350.

    Article  CAS  Google Scholar 

  • Niere, J.O., G. Deangelis, B.R. Grant, 1994: The effect of phosphonate on the acid-soluble phosphorus components in the genus Phytophthora. Microbiology 140, 1661–1670.

    Article  CAS  Google Scholar 

  • Ouimette, D.G., M.D. Coffey, 1989: Phosphonate levels in avocado (Persea americana) seedlings and soil following treatment with fosetyl-Al or potassium phosphonate. Plant Dis. 73, 212–215.

    Article  CAS  Google Scholar 

  • Panicker, S., K. Gangadharan, 1999: Controlling downy mildew of maize caused by Peronosclerospora sorghi by foliar spays of phosphonic acid compounds. Crop Prot. 18, 115–118.

    Article  CAS  Google Scholar 

  • Reuveni, M., D. Sheglov, Y. Cohen, 2003: Control of moldy-core decay in apple fruits by ß-aminobutyric acids and potassium phosphites. Plant Dis. 87, 933–936.

    Article  CAS  Google Scholar 

  • Stehmann, C., B.R. Grant, 2000: Inhibition of enzymes of the glycolytic pathway and hexose monophosphate bypass by phosphonate. Pestic. Biochem. Physiol. 67, 13–24.

    Article  CAS  Google Scholar 

  • Vawdrey, L.L., D. Westerhuis, 2007: Field and glasshouse evaluations of metalaxyl, potassium phosphonate, acibenzolar and tea tree oil in managing Phytophthora root rot of papaya in far northern Queensland, Australia. Australas. Plant Pathol. 36, 270–276.

    Article  CAS  Google Scholar 

  • Wilkinson, C.J., B.L. Shearer, T.J. Jackson, G.E.S.J. Hardy, 2001: Variation in sensitivity of Western Australian isolates of Phytophthora cinnamomi to phosphite in vitro. Plant Pathol. 50, 83–89.

    Article  Google Scholar 

  • Zar, J.H., 1999: Biostatistical Analysis. Prentice-Hall, Upper Saddle River, NJ, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Lobato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobato, M.C., Olivieri, F.P., Daleo, G.R. et al. Antimicrobial activity of phosphites against different potato pathogens. J Plant Dis Prot 117, 102–109 (2010). https://doi.org/10.1007/BF03356343

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356343

Key words

Stichwörter

Navigation