Skip to main content
Log in

Low 25-hydroxyvitamin D concentrations in obese women: Their clinical significance and relationship with anthropometric and body composition variables

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Obesity is associated with low concentrations of 25-hydroxyvitamin D [25(OH) D]. However, conflicting results have been found regarding the relationship of 25(OH) D with anthropometric and adiposity parameters. The aim of our study was to analyze the association between 25(OH) D and body fat (BF) in a homogeneous cohort of non-obese, obese, and morbidly obese Caucasian women. The study was performed in L’Hospitalet de Llobregat, a city adjacent to Barcelona with a latitude of 41 degrees, 22 minutes, and 5 seconds north. Materials and methods: Plasma concentrations of 25(OH) D were determined and body composition was evaluated by bioelectrical impedance in a group of 43 women with morbid obesity, 28 non-morbidly obese, and 50 non-obese women matched for age. Results: Morbidly obese women showed lower 25(OH) D concentrations compared to non-morbidly and non-obese women (37.9±16 vs 40.2±13 vs 56.7±21 nmol/l, p=0.001). Fifty-one percent of morbidly obese women had vitamin D deficiency [25(OH) D<38 nmol/l] compared to 22% of non-obese patients, (p=0.004). In the bivariate correlation analysis 25(OH) D was inversely associated with weight (r=−0.41, p=0.001), body mass index (BMI) (r=−0.432, p=0.001 ), waist to hip ratio (WHR)(r=−0.40, p=0.001 ), BF (r=−0.53, p=0001 ), fat mass (r=−0.44, p=0.0001), fat-free mass (r=−0.35, p=0.001). In the multivariate general linear model analysis, 25(OH) D was associated with season of examination (p=0.001) and was negatively associated with BF (β=−0.75, p=0.001), after adjusting for age, BMI, and WHR. Conclusions: 25(OH) D concentrations are associated with body composition variables especially by BF, independently of seasonal variability. Therefore, body adiposity should be considered when assessing vitamin D requirements in obese patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 2001, 22: 477–501.

    Article  CAS  PubMed  Google Scholar 

  2. Parfitt AM, Rao DS, Stanciu J, Villanueva AR, Kleerekoper M, Frame B. Irreversible bone loss in osteomalacia. Comparison of radial photon absorptiometry with iliac bone histomorphometry during treatment. J Clin Invest 1985, 76: 2403–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Chapuy MC, Arlot ME, Duboeuf F, et al. Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Engl J Med 1992, 327: 1637–42.

    Article  CAS  PubMed  Google Scholar 

  4. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effects of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 1997, 337: 670–6.

    Article  CAS  PubMed  Google Scholar 

  5. MacLaughlin J, Holik MF. Aging decreases the capacity of skin to produce vitamin D3. J Clin Invest 1985, 76: 1536–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Holick MF. Vitamin D requirements for the elderly. Clin Nutr 1986, 5: 121–9.

    Google Scholar 

  7. Clemens TL, Zhou XY, Myles M, Endres D, Lindsay R. Serum vitamin D2 and vitamin D3 metabolite concentrations and absorption of vitamin D2 in elderly subjects. J Clin Endocrinol Metab 1986, 63: 656–60.

    Article  CAS  PubMed  Google Scholar 

  8. Matsuoka LY, Wortsman J, Haddad JG, Kolm P, Hollis BW. Racial pigmentation and the cutaneous synthesis of vitamin D. Arch Dermatol 1991, 127: 536–8.

    Article  CAS  PubMed  Google Scholar 

  9. Bell NH, Epstein S, Greene A, Shary J, Oexmann MJ, Shaw S. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest 1985, 76: 370–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Liel Y, Ulmer E, Shary J, Hollis BW, Bell NH. Low circulating vitamin D in obesity. Calcif Tissue Int 1988, 43: 199–201.

    Article  CAS  PubMed  Google Scholar 

  11. Buffington C, Walker B, Cowan GS Jr, Scruggs D. Vitamin D deficiency in the morbidly obese. Obes Surg 1993, 3: 421–4.

    Article  PubMed  Google Scholar 

  12. Chiu KC, Chu A, Go VL, Saad MF. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 2004, 79: 820–5.

    CAS  PubMed  Google Scholar 

  13. Parikh SJ, Edelman M, Uwaifo GI, et al. The relationship between obesity and serum 1,25-dihidroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab 2004, 89: 1196–9.

    Article  CAS  PubMed  Google Scholar 

  14. Arunabh S, Pollack S, Yeh J, Aloia JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab 2003, 88: 157–61.

    Article  CAS  PubMed  Google Scholar 

  15. Compston JE, Vedi S, Ledger JE, Webb A, Gazet JC, Pilkington TR. Vitamin D status and bone histomorphometry in gross obesity. Am J Clin Nutr 1981, 34: 2359–63.

    CAS  PubMed  Google Scholar 

  16. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000, 72: 690–3.

    CAS  PubMed  Google Scholar 

  17. Ybarra J, Sanchez-Hernandez J, Gich I, et al. Unchanged hypovitaminosis D and secondary hyperparathyroidism in morbid obesity after bariatric surgery. Obes Surg 2005, 15: 330–5.

    Article  PubMed  Google Scholar 

  18. Snijder MB, Van Dam RM, Visser M, et al. Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women. J Clin Endocrinol Metab 2005, 90: 4119–23.

    Article  CAS  PubMed  Google Scholar 

  19. Looker AC. Body fat and vitamin D status in black versus white women. J Clin Endocrinol Metab 2005, 90: 635–40.

    Article  CAS  PubMed  Google Scholar 

  20. Nesby-O’Dell S, Scanlon KS, Cogswell ME, et al. Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third National Health and Nutrition Examination Survey 1988–1994. Am J Clin Nutr 2002, 76: 187–92.

    PubMed  Google Scholar 

  21. Lucas JA, Bolland MJ, Grey AB, et al. Determinants of vitamin D status in older women living in a subtropical climate. Osteoporos Int 2005, 16: 1641–8.

    Article  CAS  PubMed  Google Scholar 

  22. American Association of Clinical Endocrinologists/American College of Endocrinology (AACE/ACE) Obesity Task Force. AACE/ACE Position statement on the prevention, diagnosis, and treatment of obesity. Endocr Pract 1998, 4: 297–330.

    Google Scholar 

  23. Kyle UG, Bosaeus I, De Lorenzo AD, et al. ESPEN Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr 2004, 23: 1430–53.

    Article  PubMed  Google Scholar 

  24. Villareal DT, Citivelli R, Chines A, Avioli LV. Subclinical vitamin D deficiency in postmenopausal women with low vertebral bone mass. J Clin Endocrinol Metab 1991, 72: 628–34.

    Article  CAS  PubMed  Google Scholar 

  25. Thomas MK, Lloyd-Jones DM, Thadhani RI, et al. Hypovitaminosis D in medical inpatients. N Engl J Med 1998, 338: 777–83.

    Article  CAS  PubMed  Google Scholar 

  26. Parfitt AM, Gallagher JC, Heaney RP, Johnston CC, Neer R, Whedon GD. Vitamin D and bone health in the elderly. Am J Clin Nutr 1982, 36: 1014–31.

    CAS  PubMed  Google Scholar 

  27. Aguado P, Del Campo MT, Garcés MV, et al. Low Vitamin D levels in outpatient postmenopausal women from a rheumatology clinic in Madrid, Spain: their relationship with bone mineral density. Osteoporos Int 2000, 11: 739–44.

    Article  CAS  PubMed  Google Scholar 

  28. Quesada JM, Jans I, Benito P, Jiménez JA, Bouillon R. Vitamin D status of elderly people in Spain. Age Ageing 1989, 18: 392–7.

    Article  CAS  PubMed  Google Scholar 

  29. Gómez JM, Maravall FJ, Gómez N, Navarro MA, Casamitjana R, Soler J. Relationship between 25-(OH) D3, the IGF-I system, leptin, anthropometric and body composition variables in a healthy, randomly selected population. Horm Metab Res 2004, 36: 48–53.

    Article  CAS  PubMed  Google Scholar 

  30. El-Kadre LJ, Rocha PR, de Almeida Tinoco AC, Tinoco RC. Calcium metabolism in pre- and postmenopausal morbidly obese women at baseline and after laparoscopic Roux-en-Y gastric bypass. Obes Surg 2004, 14: 1062–6.

    Article  PubMed  Google Scholar 

  31. Aranceta J, Serra-Majem L, Pérez-Rodrigo C, et al. Vitamins in Spanish food patterns: The eVe Study. Public Health Nutr 2001, 4: 1317–23.

    CAS  PubMed  Google Scholar 

  32. Shi H, Norman AW, Okamura WH, Sen A, Zemel MB. 1, alpha 25-dihidroxyvitamin D3 modulates human adipocyte metabolism via nongenomic action. FASEB J 2001, 15: 2751–3.

    CAS  PubMed  Google Scholar 

  33. Zemel MB, Miller SL. Dietary calcium and dairy modulation of adiposity and obesity risk. Nutr Rev 2004, 62: 125–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vilarrasa MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilarrasa, N., Maravall, J., Estepa, A. et al. Low 25-hydroxyvitamin D concentrations in obese women: Their clinical significance and relationship with anthropometric and body composition variables. J Endocrinol Invest 30, 653–658 (2007). https://doi.org/10.1007/BF03347445

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347445

Key-words

Navigation