Skip to main content
Log in

Primary aldosteronism can alter peripheral levels of transforming growth factor β and tumor necrosis factor α

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Primary aldosteronism (PA) is the most common secondary cause of hypertension that has recently been implicated in alterations of the immune system and progression of cardiovascular disease. Objective: To study the cytokines transforming growth factor β1 (TGF-β1), tumor necrosis factor α (TNF-α), and interleukin 10 (IL-10) in patients with PA and essential hypertensives (EH) and evaluate its association with the renin-angiotensin-aldosterone system. Patients and methods: We studied 26 PA and 52 EH patients as controls, adjusted by their blood pressure, body mass index, age, and gender. In both groups, PA and EH, we measured serum aldosterone (SA), plasma renin activity (PRA), and cytokines TGF-β1, TNF-α, and IL-10. In addition, 17 PA patients were treated for 6 months with spironolactone, a mineralocorticoid receptor (MR) antagonist. Results: PA patients had lower levels of TGF-β1 (17.6±4.1 vs 34.5±20.5 pg/ml, p<0.001) and TNF-α (17.0±4.4 vs 35.6±21.7 pg/ml, p<0.001) and similar IL-10 levels (99.7±18.7 vs 89.4±49.5 pg/ml, p: ns), as compared with EH controls. TGF-β1 and TNF-α levels showed a remarkable correlation with SA/PRA ratio in the total group (PA+EH). The treatment of PA patients with spironolactone increased the TGF-β1 levels (18.3±5.9 to 28.4±6.3 pg/ml, p<0.001), while TNF-α, and IL-10 remained unchanged. Conclusion: Our results showed that PA patients have lower TGF-β1 and TNF-α cytokine serum levels than EH. TGF-β1 levels were restored with spironolactone, showing a MR-dependent regulation. In this way, the chronic aldosterone excess modifies the TGF-β1 levels, which could produce an imbalance in the immune system homeostasis that may promote an early proinflammatory cardiovascular phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takeda R, Hatakeyama H, Takeda Y, et al. Aldosterone biosynthesis and action in vascular cells. Steroids 1995, 60: 120–4.

    Article  PubMed  CAS  Google Scholar 

  2. Brown NJ. Aldosterone and vascular inflammation. Hypertension 2008, 51: 161–7.

    Article  PubMed  CAS  Google Scholar 

  3. Joffe HV, Adler GK. Effect of aldosterone and mineralocorticoid receptor blockade on vascular inflammation. Heart Fail Rev 2005, 10: 31–7.

    Article  PubMed  CAS  Google Scholar 

  4. Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 2005, 45: 1243–8.

    Article  PubMed  CAS  Google Scholar 

  5. Cachofeiro V, Miana M, de Las Heras N, et al. Aldosterone and the vascular system. J Steroid Biochem Mol Biol 2008, 109: 331–5.

    Article  PubMed  CAS  Google Scholar 

  6. Gerling IC, Sun Y, Ahokas RA, et al. Aldosteronism: an immunostimulatory state precedes proinflammatory/fibrogenic cardiac phenotype. Am J Physiol Heart Circ Physiol 2003, 285: H813–21.

    PubMed  CAS  Google Scholar 

  7. Ahokas RA, Sun Y, Bhattacharya SK, Gerling IC, Weber KT. Aldosteronism and a proinflammatory vascular phenotype: role of Mg2+, Ca2+, and H2O2 in peripheral blood mononuclear cells. Circulation 2005, 111: 51–7.

    Article  PubMed  CAS  Google Scholar 

  8. Casey TM, Mulvey TM, Patnode TA, Dean A, Zakrzewska E, Plaut K. Mammary epithelial cells treated concurrently with TGF-alpha and TGF-beta exhibit enhanced proliferation and death. Exp Biol Med (Maywood) 2007, 232: 1027–40.

    Article  CAS  Google Scholar 

  9. Wu SP, Theodorescu D, Kerbel RS, et al. TGF-beta 1 is an autocrine-negative growth regulator of human colon carcinoma FET cells in vivo as revealed by transfection of an antisense expression vector. J Cell Biol 1992, 116: 187–96.

    Article  PubMed  CAS  Google Scholar 

  10. Leksa V, Godar S, Schiller HB, et al. TGF-beta-induced apoptosis in endothelial cells mediated by M6P/IGFII-R and mini-plasminogen. J Cell Sci 2005, 118: 4577–86.

    Article  PubMed  CAS  Google Scholar 

  11. Sad S, Mosmann TR. Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype. J Immunol 1994, 153: 3514–22.

    PubMed  CAS  Google Scholar 

  12. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006, 441: 235–8.

    Article  PubMed  CAS  Google Scholar 

  13. Nakae S, Komiyama Y, Nambu A, et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 2002, 17: 375–87.

    Article  PubMed  CAS  Google Scholar 

  14. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity 2004, 21: 467–76.

    Article  PubMed  CAS  Google Scholar 

  15. Sato K, Suematsu A, Okamoto K, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 2006, 203: 2673–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Tilg H, Moschen A, Kaser A. Mode of function of biological anti-TNF agents in the treatment of inflammatory bowel diseases. Expert Opin Biol Ther 2007, 7: 1051–9.

    Article  PubMed  CAS  Google Scholar 

  17. Kasama T, Miwa Y, Isozaki T, Odai T, Adachi M, Kunkel SL. Neutrophil-derived cytokines: potential therapeutic targets in inflammation. Curr Drug Targets Inflamm Allergy 2005, 4: 273–9.

    Article  PubMed  CAS  Google Scholar 

  18. Koss K, Satsangi J, Fanning GC, Welsh KI, Jewell DP. Cytokine (TNF alpha, LT alpha and IL-10) polymorphisms in inflammatory bowel diseases and normal controls: differential effects on production and allele frequencies. Genes Immun 2000, 1: 185–90.

    Article  PubMed  CAS  Google Scholar 

  19. Howell WM, Rose-Zerilli MJ. Cytokine gene polymorphisms, cancer susceptibility, and prognosis. J Nutr 2007, 137: 194S-9S.

    Google Scholar 

  20. Mosso L, Carvajal C, Gonzalez A, et al. Primary aldosteronism and hypertensive disease. Hypertension 2003, 42: 161–5.

    Article  PubMed  CAS  Google Scholar 

  21. Fardella CE, Mosso L, Gomez-Sanchez C, et al. Primary hyperaldosteronism in essential hypertensives: prevalence, biochemical profile, and molecular biology. J Clin Endocrinol Metab 2000, 85: 1863–7.

    PubMed  CAS  Google Scholar 

  22. Mulatero P, Milan A, Fallo F, et al. Comparison of confirmatory tests for the diagnosis of primary aldosteronism. J Clin Endocrinol Metab 2006, 91: 2618–23.

    Article  PubMed  CAS  Google Scholar 

  23. Mosso LM, Carvajal CA, Maiz A, et al. A possible association between primary aldosteronism and a lower beta-cell function. J Hypertens 2007, 25: 2125–30.

    Article  PubMed  CAS  Google Scholar 

  24. Denolle T, Chatellier G, Julien J, Battaglia C, Luo P, Plouin PF. Left ventricular mass and geometry before and after etiologic treatment in renovascular hypertension, aldosterone-producing adenoma, and pheochromocytoma. Am J Hypertens 1993, 6: 907–13.

    PubMed  CAS  Google Scholar 

  25. Matsumura K, Fujii K, Oniki H, Oka M, Iida M. Role of aldosterone in left ventricular hypertrophy in hypertension. Am J Hypertens 2006, 19: 13–8.

    Article  PubMed  CAS  Google Scholar 

  26. Young WF Jr. Pheochromocytoma and primary aldosteronism: diagnostic approaches. Endocrinol Metab Clin North Am 1997, 26: 801–27.

    Article  PubMed  Google Scholar 

  27. Kreft C, Menard J, Corvol P. Vaule of renin measurement, saralasin test, and acebutolol treatment in hypertension. Kidney Int 1979, 15: 176–83.

    Article  PubMed  CAS  Google Scholar 

  28. Kapadia SR, Yakoob K, Nader S, Thomas JD, Mann DL, Griffin BP. Elevated circulating levels of serum tumor necrosis factor-alpha in patients with hemodynamically significant pressure and volume overload. J Am Coll Cardiol 2000, 36: 208–12.

    Article  PubMed  CAS  Google Scholar 

  29. Fichtlscherer S, Breuer S, Heeschen C, Dimmeler S, Zeiher AM. Interleukin-10 serum levels and systemic endothelial vasoreactivity in patients with coronary artery disease. J Am Coll Cardiol 2004, 44: 44–9.

    Article  PubMed  CAS  Google Scholar 

  30. Torun D, Ozelsancak R, Turan I, Micozkadioglu H, Sezer S, Ozdemir FN. The relationship between obesity and transforming growth factor beta on renal damage in essential hypertension. Int Heart J 2007, 48: 733–41.

    Article  PubMed  CAS  Google Scholar 

  31. Zhu S, Liu Y, Wang L, Meng QH. Transforming growth factor-beta1 is associated with kidney damage in patients with essential hypertension: renoprotective effect of ACE inhibitor and/or angiotensin II receptor blocker. Nephrol Dial Transplant 2008, 23: 2841–6.

    Article  PubMed  CAS  Google Scholar 

  32. Marchesi C, Paradis P, Schiffrin EL. Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci 2008, 29: 367–74.

    Article  PubMed  CAS  Google Scholar 

  33. Mutoh A, Isshiki M, Fujita T. Aldosterone enhances ligand-stimulated nitric oxide production in endothelial cells. Hypertens Res 2008, 31: 1811–20.

    Article  PubMed  CAS  Google Scholar 

  34. Granger JP, Alberola AM, Salazar FJ, Nakamura T. Control of renal hemodynamics during intrarenal and systemic blockade of nitric oxide synthesis in conscious dogs. J Cardiovasc Pharmacol 1992, 20: S160–2.

    Article  PubMed  CAS  Google Scholar 

  35. Ying WZ, Sanders PW. The interrelationship between TGF-beta1 and nitric oxide is altered in salt-sensitive hypertension. Am J Physiol Renal Physiol 2003, 285: F902–8.

    PubMed  CAS  Google Scholar 

  36. Mehta JL, Chen HJ, Li DY. Protection of myocytesfrom hypoxia-reoxygenation injury by nitric oxide is mediated by modulation of transforming growth factor-beta1. Circulation 2002, 105: 2206–11.

    Article  PubMed  CAS  Google Scholar 

  37. Ikeuchi M, Tsutsui H, Shiomi T, et al. Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res 2004, 64: 526–35.

    Article  PubMed  CAS  Google Scholar 

  38. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006, 24: 677–88.

    Article  PubMed  CAS  Google Scholar 

  39. Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007, 8: 950–7.

    Article  PubMed  CAS  Google Scholar 

  40. Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1 — and Th17-cell differentiation. Immunity 2007, 26: 579–91.

    Article  PubMed  CAS  Google Scholar 

  41. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007, 8: 942–9.

    Article  PubMed  CAS  Google Scholar 

  42. Nakano M, Knowlton AA, Dibbs Z, Mann DL. Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation 1998, 97: 1392–400.

    Article  PubMed  CAS  Google Scholar 

  43. Skyschally A, Schulz R, Heusch G. Pathophysiology of myocardial infarction: protection by ischemic pre- and postconditioning. Herz 2008, 33: 88–100.

    Article  PubMed  Google Scholar 

  44. Wong GH, Goeddel DV. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 1988, 242: 941–4.

    Article  PubMed  CAS  Google Scholar 

  45. Park HS, Cho SG, Kim CK, et al. Heat shock protein hsp72 is a negative regulator of apoptosis signal-regulating kinase 1. Mol Cell Biol 2002, 22: 7721–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Kurrelmeyer KM, Michael LH, Baumgarten G, et al. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci U S A 2000, 97: 5456–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Hansen PR, Rieneck K, Bendtzen K. Spironolactone inhibits production of proinflammatory cytokines by human mononuclear cells. Immunol Lett 2004, 91: 87–91.

    Article  PubMed  CAS  Google Scholar 

  48. Bendtzen K, Hansen PR, Rieneck K; Spironolactone/Arthritis Study Group. Spironolactone inhibits production of proinflammatory cytokines, including tumour necrosis factor-alpha and interferon-gamma, and has potential in the treatment of arthritis. Clin Exp Immunol 2003, 134: 151–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Miura R, Nakamura K, Miura D, et al. Anti-inflammatory effect of spironolactone on human peripheral blood mononuclear cells. J Pharmacol Sci 2006, 101: 256–9.

    Article  PubMed  CAS  Google Scholar 

  50. Irita J, Okura T, Manabe S, et al. Plasma osteopontin levels are higher in patients with primary aldosteronism than in patients with essential hypertension. Am J Hypertens 2006, 19: 293–7.

    Article  PubMed  CAS  Google Scholar 

  51. Takakuwa H, Shimizu K, Izumiya Y, et al. Dietary sodium restriction restores nocturnal reduction of blood pressure in patients with primary aldosteronism. Hypertens Res 2002, 25: 737–42.

    Article  PubMed  CAS  Google Scholar 

  52. Williams D, Croal B, Furnace J, et al. The prevalence of a raised aldosterone-renin ratio (ARR) among new referrals to a hypertension clinic. Blood press 2006, 15: 164–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Kalergis MD or C. E. Fardella MD.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvajal, C.A., Herrada, A.A., Castillo, C.R. et al. Primary aldosteronism can alter peripheral levels of transforming growth factor β and tumor necrosis factor α. J Endocrinol Invest 32, 759–765 (2009). https://doi.org/10.1007/BF03346533

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346533

Key-words

Navigation