Skip to main content
Log in

Identification and characterization of a novel expandable adult stem/progenitor cell population in the human exocrine pancreas

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

It is a general opinion that tissue-specific stem cells are present in adult tissues but their specific properties remain elusive. They are rare in tissues and heterogeneous; in addition, their identification and the characterization of their progeny has encountered technical difficulties. In particular, the existence of pancreatic stem cells remains elusive because specific markers for their identification are not available. We established a method for the isolation of a population of stem/progenitor cells from the human exocrine pancreas, and propose it as a model for other human compact organs. We also used markers that identified and finally characterized these cells. Spheroids with self-replicative potential were obtained from all specimens. The isolated population contained a subset of CD34+ CD45− cells and was able to generate, in appropriate conditions, colonies that produce insulin. We obtained evidence that most freshly isolated spheroids, when co-cultured with the c-kit positive neuroblastoma cell line LAN 5, produced a c-kit positive progeny of cells larger in their cytoplasmic content than the original spheroid population, with elongated morphology resembling the neuronal phenotype. We identified a novel predominant functional type of stem/progenitor cell within the human exocrine pancreas, able to generate insulin-producing cells and potentially non-pancreatic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuehnle I, Goodell MA. The therapeutic potential of stem cells from adults. BMJ 2002, 325: 372–6.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Korbling M, Estrov Z. Adult stem cells for tissue repair — a new therapeutic concept? N Engl J Med 2003, 349: 570–82.

    Article  PubMed  Google Scholar 

  3. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell 2001, 105: 829–41.

    Article  PubMed  CAS  Google Scholar 

  4. Weissman IL. Stem cells: units of development, units of regeneration and units in evolution. Cell 2000, 100: 157–68.

    Article  PubMed  CAS  Google Scholar 

  5. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004, 116: 639–48.

    Article  PubMed  CAS  Google Scholar 

  6. Galli R, Gritti A, Bonfanti L, Vescovi AL. Neural stem cells: an overview. Circ Res 2003, 92: 598–608.

    Article  PubMed  CAS  Google Scholar 

  7. Gritti A, Parati EA, Cova L, et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 1996, 16: 1091–100.

    PubMed  CAS  Google Scholar 

  8. Horner PJ, Gage FH. Regenerating the damaged central nervous system. Nature 2000, 407: 963–70.

    Article  PubMed  CAS  Google Scholar 

  9. Teng YD, Lavik EB, Qu X, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 2002, 99: 3024–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Pluchino S, Quattrini A, Brambilla E, et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 2003, 422: 688–94.

    Article  PubMed  CAS  Google Scholar 

  11. Alessandri G, Pagano S, Bez A, et al. Isolation and culture of human muscle-derived stem cells able to differentiate into myogenic and neurogenic cell lineages. Lancet 2004, 364: 1872–83.

    Article  PubMed  CAS  Google Scholar 

  12. Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 2004, 95: 911–21.

    Article  PubMed  CAS  Google Scholar 

  13. Fierabracci A, Di Giovine M, Zavaglia D, Caione P. Isolation and characterization of adult stem/progenitor cells in the human bladder (bladder spheroids): perspectives of application in pediatric urology. Ped Surg Inter 2007, 23: 837–9.

    Article  Google Scholar 

  14. Lakey JR, Mirbolooki M, Shapiro AM. Current status of clinical islet transplantation. Methods Mol Biol 2006, 333: 47–104.

    PubMed  Google Scholar 

  15. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004, 429: 41–6.

    Article  PubMed  CAS  Google Scholar 

  16. Yalniz M, Pour PM. Are there any stem cells in the pancreas? Pancreas 2005, 31: 108–18.

    Article  PubMed  Google Scholar 

  17. Banerjee M, Bhonde RR. Islet generation from intra islet precursor cells of diabetic pancreas: in vitro studies depicting in vivo differentiation. JOP 2003, 4: 137–45.

    PubMed  Google Scholar 

  18. Kuo CY, Herrod HG, Burghen GA. Formation of pseudoislets from human pancreatic cultures. Pancreas 1992, 7: 320–5.

    Article  PubMed  CAS  Google Scholar 

  19. Wang R, Li J, Yashpal N. Phenotypic analysis of c-Kit expression in epithelial monolayers derived from postnatal rat pancreatic islets. J Endocrinol 2004, 182: 113–22.

    Article  PubMed  CAS  Google Scholar 

  20. Zulewski H, Abraham EJ, Gerlach MJ, et al. Multipotential nestinpositive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 2001, 50: 521–33.

    Article  PubMed  CAS  Google Scholar 

  21. Gershengorn MC, Hardikar AA, Wei C, Geras-Raaka E, MarcusSamuels B, Raaka BM. Epithelial-to-mesenchimal transition generates proliferative human islet precursors cells. Science 2004, 306: 2261–4.

    Article  PubMed  CAS  Google Scholar 

  22. Holland AM, Góñez LJ, Harrison LC. Progenitor cells in the adult pancreas. Diab Metab Res Rev 2003, 20: 13–27.

    Article  Google Scholar 

  23. Song KH, Ko SH, Ahn YB, et al. In vitro transdifferentiation of adult pancreatic acinar cells into insulin-expressing cells. Biochem Biophys Res Comm 2004, 316: 1094–100.

    Article  PubMed  CAS  Google Scholar 

  24. Bonner-Weir S, Taneja M, Weir GC, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000, 97: 7999–8004.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. D’Alessandro JS, Lu K, Fung BP, Colman A, Clarke DL. Rapid and efficient in vitro generation of pancreatic islet progenitor cells from nonendocrine epithelial cells in the adult human pancreas. Stem Cells Dev 2007, 16: 75–89.

    Article  PubMed  Google Scholar 

  26. Zou C, Suen PM, Zhang YA. Isolation and in vitro characterisation of pancreatic progenitor cells from the islets of diabetic monkey models. Int J Biochem Cell Biol 2006, 38: 973–84.

    Article  PubMed  CAS  Google Scholar 

  27. Hao E, Tyrberg B, Itkin-Ansari P, et al. Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nat Med 2006, 12: 310–6.

    Article  PubMed  CAS  Google Scholar 

  28. Seeberger KL, Dufour JM, Shapiro AM, Lakey JR, Rajotte RV, Korbutt GS. Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Lab Invest 2006, 86: 141–53.

    Article  PubMed  CAS  Google Scholar 

  29. Awadalla B. Immortalisation of beta cells. PhD thesis, Queen Mary and Westfield College, University of London, 1995.

  30. Linetsky E, Bottino R, Lehmann R, Alejandro R, Inverardi L, Ricordi C. Improved human islet isolation using a new enzyme blend, liberase. Diabetes 1997, 46: 1120–3.

    Article  PubMed  CAS  Google Scholar 

  31. Lyons AB. Divided we stand: tracking cell proliferation with carboxyfluorescein diacetate succinidyl ester. Immunol Cell Biol 1999, 77: 509–15.

    Article  PubMed  CAS  Google Scholar 

  32. Toda S, Watanabe K, Yokoi F, et al. A new organotypic culture of thyroid tissue maintains three-dimensional follicles with C cells for a long term. Biochem Biophys Res Comm 2002, 294: 906–11.

    Article  PubMed  CAS  Google Scholar 

  33. Kusunoki T, Nishida S, Murata K, Tomura T. Correlation between morphology of colonies formed by human thyroid cells in collagen gel culture and invasive ability. Thyroid 2002, 12: 281–6.

    Article  PubMed  Google Scholar 

  34. De Tullio R, Averna M, Salamino F, Pontremoli S, Melloni E. Differential degradation of calpastatin by mu- and m-calpain in Ca(2+)-enriched human neuroblastoma LAN-5 cells. FEBS Lett 2000, 475: 17–21.

    Article  PubMed  Google Scholar 

  35. Bonner-Weir S, Baxter LA, Schuppin GT, Smith FE. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 1993, 42: 1715–20.

    Article  PubMed  CAS  Google Scholar 

  36. Sarvenick NE, Gu D. Regeneration of pancreatic endocrine cells in interferon-gamma transgenic mice. Adv Exp Med Biol 1992, 321: 85–9.

    Article  Google Scholar 

  37. Zhang YQ, Kritzik M, Sarvetnick N. Identification and expansion of pancreatic stem/progenitor cells. J Cell Mol Med 2005, 9: 331–44.

    Article  PubMed  CAS  Google Scholar 

  38. Lardon J, De Breuck S, Rooman I, et al. Plasticity in the adult rat pancreas: transdifferentiation of exocrine to hepatocyte-like cells in primary culture. Hepatology 2004, 39: 1499–507.

    Article  PubMed  CAS  Google Scholar 

  39. Lechner A, Leech CA, Abraham EJ, Nolan AL, Habener JF. Nestinpositive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem Biophys Res Commun 2002, 293: 670–4.

    Article  PubMed  CAS  Google Scholar 

  40. Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF. Insulinotropic hormone glucagons-like peptide 1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology 2002, 143: 3152–61.

    Article  PubMed  CAS  Google Scholar 

  41. Guz Y, Nasir I, Teitelman G. Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology 2001, 142: 4956–68.

    PubMed  CAS  Google Scholar 

  42. Gonelle-Gispert C, Baertschiger RM, Morel P, et al. Human exocrine pancreas-mesenchymal stem cells and their potential to differentiate into beta cells. Diabetologia 2006, 49 (Suppl 1): 1–755.

    Google Scholar 

  43. Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA. Insulin staining of ES cell progeny from insulin uptake. Science 2003, 299: 363.

    PubMed  Google Scholar 

  44. Hao E, Tyrberg B, Itkin-Ansari P, et al. Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Nat Med 2006, 12: 310–6.

    Article  PubMed  CAS  Google Scholar 

  45. de Konig EJP, Nienaber C, Yatoh S, et al. Endothelial cell involvement in proliferation and differentiation of human pancreatic duct cells. Diabetologia 2006, 49 (Suppl 1): 1–755.

    Article  Google Scholar 

  46. Yamamoto T, Yamato E, Taniguchi H, et al. Stimulation of cAMP signalling allows isolation of clonal pancreatic precursor cells from adult mouse pancreas. Diabetologia 2006, 49: 2359–67.

    Article  PubMed  CAS  Google Scholar 

  47. Bonnet D. Haematopoietic stem cells. J Pathol 2002, 197: 430–40.

    Article  PubMed  Google Scholar 

  48. Zipori D. The nature of stem cells: state rather than entity. Nat Rev Genet 2004, 5: 873–6.

    Article  PubMed  CAS  Google Scholar 

  49. Condorelli G, Borello U, De Angelis L, et al. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci U S A 2001, 98: 10733–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fierabracci MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puglisi, M.A., Giuliani, L. & Fierabracci, A. Identification and characterization of a novel expandable adult stem/progenitor cell population in the human exocrine pancreas. J Endocrinol Invest 31, 563–572 (2008). https://doi.org/10.1007/BF03346409

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346409

Key-words

Navigation