Skip to main content
Log in

Application of structural equation modeling for assessing relationships between organic carbon and soil properties in semiarid Mediterranean region

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Restoration of atmospheric carbon in soils has principal many good effects. Arid lands cover more than 40 % of the global earth area, but only stock 16 % from the global carbon stock. It seems to be a suitable solution for this environmental issue, but still all variables controlling organic carbon in such kinds of soil, was ignored. This study aims to develop two models of organic carbon under clayey and sandy soils in semi-arid Mediterranean zones basing on physical and chemical soil properties. For establishing both models, structural equation modeling was used. For modeling organic carbon, two Tunisian soil databases composed from clayey and sandy soils made respectively, of 450 and 602 soil horizons were used. Using the two databases for all properties, the principal component analysis shows two components for clayey soil; (i) chemical properties and bulk density and (ii) physical properties. For the sandy soil it reveals two components; (i) chemical properties and (ii) physical properties. According to the derived components for each soil category, two models have been built. Structural equation modeling results show that clayey model has proved that organic carbon was controlled by chemical properties and bulk density more than physical properties and sandy model has proved that organic carbon was controlled by chemical properties more than physical properties. The root mean square errors of approximation were 0.079 and 0.050 for the clayey and sandy models, respectively. Then these two models were validated with two other databases from Tunisian dryland soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abate, G.; Masini, J. C., (2005). Influence of pH, ionic strength and humic acid on adsorption of Cd (II) and Pb (II) onto vermiculite. Colloid. Surf. A. Physicochem. Eng. Aspects, 262(1–3), 33–39 (7 pages).

    Article  CAS  Google Scholar 

  • Abdel-Ghani, N. T.; Elchaghaby, G. A., (2007). Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption. Int. J. Environ. Sci. Tech., 4(4), 451–456 (8 pages).

    Article  CAS  Google Scholar 

  • Arhonditsis, G. B.; Paerl, H. W.; Valdes-Weaver, L. M.; Stow, C. A.; Steinberg, L. J.; Reckhow, K. H., (2007). Application of Bayesian structural equation modeling for examining phytoplankton dynamics in the Neuse River Estuary (North Carolina, USA). Estuarine, Coast. Shelf Sci., 72(1–2), 63–80 (18 pages).

    Article  Google Scholar 

  • Bandyopadhyay, G.; Chattopadhyay. S., (2007). Single hidden layer artificial neural network models versus multiple linear regression model in forecasting the time series of total ozone. Int. J. Environ. Sci. Tech., 4(1), 141–150 (10 pages).

    Article  CAS  Google Scholar 

  • Batjes, N. H., (1996). Total carbon and nitrogen in the soils of the world. Eur. J. Soil. Sci., 47(2), 151–163 (31 pages).

    Article  CAS  Google Scholar 

  • Batjes, N. H., (1999). Management options for reducing CO2 concentrations in the atmosphere by increasing carbon sequestration in the soil. Report 410-200-031, Dutch national Research Programme on Global Air Pollution and Climate Change and Technical Paper 30, International Soil Reference and Information Centre, Wageningen.

  • Batjes, N. H.; Sombroek, W. G., (1997). Possibilities for carbon sequestration in tropical and subtropical soils. Glob. Chang. Biol., 3(2), 161–173 (13 pages).

    Article  Google Scholar 

  • Batjes, N. H., (2006). Soil carbon stocks of Jordan and projected changes upon improved management of croplands. Geoderma, 132(3–4), 361–371 (11 pages)

    Article  CAS  Google Scholar 

  • Bayer, C.; Martin-Neto, L.; Mielniczuk, J.; Dieckow, J.; Amado, T. J. C., (2006). C and N stocks and the role of molecular recalcitrance and organomineral interaction in stabilizing soil organic matter in a subtropical Acrisol managed under no-tillage. Geoderma, 133(3–4), 258–268 (11 pages).

    Article  CAS  Google Scholar 

  • Bell, M. J.; Moody, P. W.; Yo, S. A.; Connoly, R. D., (1999). Using active fractions of soils organic matter as indicators of the sustainability of Ferrosol farming systems. Aust. J. Soil Res., 37(2), 279–287 (9 pages).

    Article  Google Scholar 

  • Benites, V. M.; Machado, L. O. A.; Fidalgo, C. C.; Coelho, M. R.; Madari, B. E., (2007). Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. Geoderma, 139(1–2), 90–97 (8 pages).

    Article  Google Scholar 

  • Bentler, P. M., (1989). EQS Structural equations program manual. Los Angeles. CA: BMDP Statistical Software.

    Google Scholar 

  • Bentler, P. M., (1990). Comparative fit indexes in structural models. Psychol. Bull., 107(2), 238–246 (9 pages).

    CAS  Google Scholar 

  • Bentler, P. M., (1992). On the fit of models to covariances and methodology to the bulletin. Psychol. Bull., 112(3), 400–404 (5 pages).

    Article  CAS  Google Scholar 

  • Bernoux, M.; Arrouays, D.; Cerri, C.; Volkoff, B.; Jolivet, C., (1998). Bulk densities of Brazilian Amazon soils related to other soil properties. Soil Sci. Soc. Am. J., 62(3), 743–749 (7 pages).

    Article  CAS  Google Scholar 

  • Bernoux, M.; Carvalho, M. C. S.; Volkoff, B.; Cerri, C. C., (2002). Brazil’s soil carbon stocks. Soil Sci. Soc. Am. J., 66(3), 888–896 (9 pages).

    Article  CAS  Google Scholar 

  • Bicheldey, T. K.; Latushkina, E., (2010). Biogass emission prognosis at the landfills. Int. J. Environ. Sci. Tech., 7(4), 623–628 (6 pages).

    Google Scholar 

  • Bollen, K. A., (1986). Sample size and Bentler and Bonett’s nonnormed fit index. Psychometrika, 51(3), 375–377 (3 pages).

    Article  Google Scholar 

  • Bollen, K. A., (1989). Structural equation with latent variables. Wiley, New York.

    Google Scholar 

  • Bollen, K. A.; Long, J. S., (1993). Testing structural equation models. Newbury Park, CA: sage.

    Google Scholar 

  • Bowker, M. A.; Belnap, J.; Davidson, D. W.; Phillips, S. L., (2005). Evidence for micronutrient limitation of biological soil crusts: Importance to arid-lands restoration. Ecol. Appl., 15(6), 1941–1951 (11 pages).

    Article  Google Scholar 

  • Browne, M. W.; Cudeck, R., (1989). Single sample cross-validation indices for covariance structures. Multivariate Bihav. Res., 24(4), 445–455 (11 pages).

    Article  Google Scholar 

  • Browne, M. W.; Cudeck, R., (1993). Alternative ways of assessing model fit. Sociologic. Meth. Res., 21(2), 230–258 (29 pages).

    Article  Google Scholar 

  • Byrne, B. M., (2009). Structural equation modeling with AMOS basic concepts, applications and programming. 2nd Ed. Routledge Taylor and Francis Group.

  • Caravaca, F.; Lax, A.; Albaladejo, J., (1999). Organic matter, nutrient contents and cation exchange capacity in fine fractions from semi-arid calcareous soils. Geoderma, 93(3–4), 161–176 (6 pages).

    Article  CAS  Google Scholar 

  • Chen, D. Z.; Zhang, J. X.; Chen, J. M., (2010). Adsorption of methyl tert-butyl ether using granular activated carbon: Equilibrium and kinetic analysis. Int. J. Environ. Sci. Tech., 7(2), 235–242 (8 pages).

    CAS  Google Scholar 

  • Chen, Y.; Miller, J. R.; Francis, J. A.; Russell, G. L.; Aires, F., (2003). Observed and modeled relationships among Arctic climate variables. J. Geophys. Res., 108(D24), 4799.

    Google Scholar 

  • Chenini, I.; Khemiri, S., (2009). Evaluation of ground water quality using multiple linear regression and structural equation modeling. Int. J. Environ. Sci. Tech., 6(3), 509–519 (11 pages).

    CAS  Google Scholar 

  • Chien, M. K.; Shih, L. H., (2007). An empirical study of the implementation of green supply chain management practices in the electrical and electronic industry and their relation to organizational performances. Int. J. Environ. Sci. Tech., 4(3), 383–394 (12 pages).

    Google Scholar 

  • Christensen, B. T., (1986). Straw incorporation and soil organic matter in macro-aggregates and particle size separates. J. Soil Sci., 37(1), 125–135 (11 pages).

    Article  Google Scholar 

  • Christensen, B. T., (1996). Carbon in primary and secondary organomineral complexes. In structure and organic matter storage in agricultural soils in: Cater, M. R.; Stewart, B. A., (Eds.) 97–165. CRC Press, Boca Raton.

    Google Scholar 

  • Chukwuma, M. C.; Eshett, E. T.; Onweremadu, E. U.; Okon, M. A., (2010). Zinc availability in relation to selected soil properties in a crude oil polluted eutric tropofluvent. Int. J. Environ. Sci. Tech., 7(2), 261–270 (10 pages).

    CAS  Google Scholar 

  • Dercova, K.; Sejakova, Z.; Skokanova, M.; Barancikova, G.; Makovnýkova, J., (2006). Potential use of organomineral complex (OMC) for bioremediation ofpentachlorophenol (PCP) in soil. Int. Biodeter. Biodegr., 58(3–4), 248–253 (6 pages).

    Article  CAS  Google Scholar 

  • Dillon, W.; Goldstein, M., (1984). Multivariate Analysis. Methods and Application. Wiley, New York.

    Google Scholar 

  • Dixon, J. B., (1991). Roles of clays in soils. Appl. Clay Sci., 5(5–6), 489–503 (15 pages).

    Article  CAS  Google Scholar 

  • Eswaran, H.; Van den Berg, E.; Reich, P.; Kimble, J., (1995). Global soil carbon resources. in: Lal, R.; Kimble, J.; Levine, E.; Stewart, B. A. (Eds.), Soil and Global Change, 27–43. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Fan, X.; Thompson, B.; Wang, L., (1999). Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes. Struct. Equ. Model., 6(1), 56–83 (28 Pages).

    Article  Google Scholar 

  • Feigl, B. J.; Sparling, G. P.; Ross, D. J.; Cerri, C. C., (1995). Soil microbial biomass in Amazonian soils: Evaluation of methods and estimates of pool sizes. Soil Biol. Biochem., 27(11), 1467–1472 (6 pages).

    CAS  Google Scholar 

  • Gallali, T., (2004). Clés du sol. 1st Ed. Centre de Publication Universitaire-Tunis.

  • Garcia-Oliva, F.; Sanford J. R. L.; Kelly, E., (1999). Effects of slash-and-burn management on soil aggregate organic C and N in a tropical deciduous forest. Geoderma, 50(1–2), 1–12 (12 pages).

    Article  Google Scholar 

  • Goyal, P.; Sharma, P.; Srivastava, S.; Srivastava, M. M., (2008). Saraca indica leaf powder for decontamination of Pb: Removal, recovery, adsorbent characterization and equilibrium modeling. Int. J. Environ. Sci. Tech., 5(1), 27–34(8 pages).

    CAS  Google Scholar 

  • Gudmundsson, T.; Bjornsson, H.; Thorvaldsson, G., (2004). Organic carbon accumulation and pH changes in an Andic Gleysol under a long-term fertilizer experiment in Iceland. Catena, 56(1–3), 213–224 (12 pages).

    Article  CAS  Google Scholar 

  • Guggenberger, G.; Zech, W.; Aumaier, L.; Hristensen, B. T., (1995). Land-use effects on the composition of organic matter in particle-size separates of soils: II. CPMAS and solution 13C NMR analysis. Eur. J. Soil. Sci., 46(1), 147–158 (12 pages).

    Article  CAS  Google Scholar 

  • Hair J. F.; Anderson, R. E.; Tatham, R. L.; Black, W. C., (1998). Multivariate Data Analysis, Prentice-Hall, Upper Saddle River. (NJ: Prentice-Hall).

    Google Scholar 

  • Hassink, J.; Whitmore, A. P., (1997). A model for the physical protection of organic matter in soils. Soil Sci. Soc. Am. J., 61, 131–139 (9 pages).

    Article  CAS  Google Scholar 

  • Hu, L. T.; Bentler, P. M., (1999). Cutoff criteria for indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Modl. Multidisci. J., 6(1), 1–55 (55 Pages).

    Article  Google Scholar 

  • Henry, M.; Valentini, R.; Bernoux, M., (2009). Soil carbon stocks in ecoregions of Africa. Biogeosci. Discuss, 6, 797–823 (27 pages).

    Article  Google Scholar 

  • Houghton, R. A., (1991). Tropical deforestation and atmospheric carbon-dioxide. Climatic Change, 19, 99–118 (20 pages).

    Article  CAS  Google Scholar 

  • Jones, C. A., (1983). Effect of soil texture on critical bulk densities for root growth. Soil Sci. Soc. Am. J., 47, 1208–1211 (4 pages).

    Article  Google Scholar 

  • James, L. R.; Mulaik, S. A.; Brett, J. M., (1982). Causal analysis: assumptions, models, and data, Beverly Hills, CA: Sage.

    Google Scholar 

  • Jenny, H., (1941). Factors of soil formation. A system of quantitative pedology. McGraw-Hill, New York.

    Google Scholar 

  • Joreskog, K. G.; Sorbom, D., (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Chicago: Scientific Software International, Chicago.

    Google Scholar 

  • Koutika, L. S.; Choné, T.; Andreux, F.; Burtin, G.; Cerri, C. C., (1999). Factors influencing carbon decomposition of topsoils from the Brazilian Amazon Basin. Biology and Fertility of Soils, 28(4), 436–438 (3 pages).

    Article  CAS  Google Scholar 

  • Kay, B. D., (1998). Soil structure and organic carbon: a review. In: Soil Processes and the Carbon Cycle (Ed. By R. Lal, J. M. Kimble, R. F. Follet and B. A. Stewart), 169–197. CRC Press, Bocxa Raton.

    Google Scholar 

  • Lal, R., (2002). Soil carbon dynamic in cropland and rangeland. Environ. Pollut., 116(3), 353–362 (10 pages).

    Article  CAS  Google Scholar 

  • Lal, R., (2003). Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degrad. Develop., 14(3), 309–322 (14 pages).

    Article  Google Scholar 

  • Laughlina, D. C.; Abellab, S. R., (2007). Abiotic and biotic factors explain independent gradients of plant community composition in ponderosa pine forests. Ecol. Model., 205(1–2), 231–240 (10 pages).

    Article  Google Scholar 

  • Laverman, A. M.; Zoomer, H. R.; Verhoef, H. A., (2001). The effect of oxygen, pH and organic carbon on soil-layer specific denitrifying capacity in acid coniferous forest. Soil Biol. Biochem., 33(4–5), 683–687 (5 pages).

    Article  CAS  Google Scholar 

  • Lee, S. B.; Lee, C. H.; Jung, K. Y.; Park, K. D.; Lee, D.; Kim, P. J., (2009). Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy. Soil Tillage Res., 104(2), 227–232 (6 pages).

    Article  Google Scholar 

  • Lejon, D. P. H.; Sebastia, J.; Lamy, I.; Chaussod, R.; Ranjard, L., (2007). Relationships between soil organic status and microbial communities in agricultural soils submitted to various types of organic management. Microb. Ecol., 53(4), 650–663 (14pages).

    Article  Google Scholar 

  • Leifeld, J.; Zimmermann, M.; Fuhrer, J., (2008). Simulating decomposition of labile soil organic carbon: Effects of pH. Soil Biol. Biochem., 40(12), 2948–2951 (4 pages).

    Article  CAS  Google Scholar 

  • Monaco, S; Hatch, D. J.; Sacco, D.; Bertora, C.; Grignani C., (2008). Changes in chemical and biochemical soil properties induced by 11-yr repeated additions of different organic materials in maize-based forage systems. Soil Biol. Biochem., 40(3), 608–615 (8 pages).

    Article  CAS  Google Scholar 

  • Mulaik, S. A.; James, L. R.; Vanaltine, J.; Bennett, N.; Lind, S.; Stilwell, C. D., (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychol. Bull., 105(3), 430–445 (16 Pages).

    Article  Google Scholar 

  • Nardi, S.; Morari, F.; Berti, A.; Tosoni, M.; Giardini, L., (2004). Soil organic matter properties after 40 years of different use of organic and mineral fertilizers. Eur. J. Agron. 21(3), 357–367 (11 pages).

    Article  Google Scholar 

  • Okoye, A. I.; Ejikeme, P. M.; Onukwuli, O. D., (2010). Lead removal from wastewater using fluted pumpkin seed shell activated carbon: Adsorption modeling and kinetics. Int. J. Environ. Sci. Tech., 7(4), 793–800 (8 pages).

    CAS  Google Scholar 

  • Paustian, K.; Levine, E.; Post, W. M.; Ryzhova, I. M., (1997). The use of models to integrate information and understanding of soil C at the regional scale. Geoderma, 79(1–4), 227–260 (34 pages).

    Article  CAS  Google Scholar 

  • Puget, P.; Chenu, C.; Balesdent, J., (1995). Total and young organic matter distributions in aggregates of silty cultivated soils. Eur. J. Soil. Sci., 46(3), 449–459 (11 pages).

    Article  Google Scholar 

  • Quideau, S. A.; Graham, R. C.; Chadwick, O. A.; Wood, H. B., (1998). Organic carbon sequestration under chaparral and pine after four decades of soil development. Geoderma, 83(3–4), 227–242 (16 pages).

    Article  CAS  Google Scholar 

  • Randall, E. W.; Mahieu, D. S.; Powlson, D. S.; Christensen, B. T., (1995). Fertilization effects on organic matter in physically fractionated soils as studied by 13C NMR: results from two long-term field experiments. Eur. J. Soil. Sci., 46(4), 449–459 (11 pages).

    Article  Google Scholar 

  • Raykov, T.; Marcoulides, G. A., (2006). A first course in structural equation modeling. 2nd Ed. Lawrence Erlbaum Associates Publishers, London.

    Google Scholar 

  • Sanger, L. M.; Anderson, J. M.; Little, D.; Bolger, T., (1997). Phenolic and carbohydrate signatures of organic matter in soils developed under grass and forest plantations following changes in land use. Eur. J. Soil. Sci., 48(2), 311–317 (7 pages).

    Article  Google Scholar 

  • Sebastia, J.; Labanowski, J.; Lamy, I., (2007). Changes in soil organic matter chemical properties after organic amendments. Chemosphere, 68(7), 1245–1253 (9 pages).

    Article  CAS  Google Scholar 

  • Skidmore, E. L.; Layton, J. B.; Armbrust, B. V.; Hooker, M. L., (1986). Soil physical properties as influenced by cropping and residue management. Soil Sci. Soc. Am. J., 50, 415–416 (2 pages).

    Article  Google Scholar 

  • Scholes, M.; Andreae, M. O., (2000). Biogenic and pyrogenic emissions from Africa and their impact on the global atmosphere. Ambio, 29(1), 23–29 (7 pages).

    Google Scholar 

  • Shang, C.; Tiessen, H., (2001). Sequential versus parallel density fractionation of silt-sized organomineral complexes of tropical soils using metatungstate. Soil Biol. Biochem. 33(2), 259–262 (4 pages).

    Article  Google Scholar 

  • Schjonning, P., Christensen, B. T., (2006). Physical and chemical properties of a sandy loam receiving animal manure, mineral fertilizer or no fertilizer for 90 years. Eur. J. Soil. Sci., 45(3), 257–268 (12 pages).

    Article  Google Scholar 

  • Schlesinger, W. H., (2000). Carbon sequestration in soils: some cautions amidst optimism. Agr. Ecosyst. Environ., 82(1–3), 121–127 (7 pages).

    Article  CAS  Google Scholar 

  • Schuman, G. E.; Janzen, H. H.; Herrick, J. E., (2002). Soil carbon dynamics and potential carbon sequestration by rangelands. Environ. Pollut., 116(3), 391–396 (6 pages).

    Article  CAS  Google Scholar 

  • Sombroek, W. G.; Nachtergaele, F. O.; Hebel, A., (1993). Amounts, dynamics ans sequestering of carbon in tropical and subtropical soils. Ambio, 22(7), 417–426 (10 pages).

    Google Scholar 

  • Sultani, M. I., Gill, M. A., Anwar, M. M., Athar, M., (2007). Evaluation of soil physical properties as influenced by various green manuring legumes and phosphorus fertilization under rainfed conditions. Int. J. Environ. Sci. Tech., 4(1), 109–118 (10 pages).

    Article  CAS  Google Scholar 

  • Suthar, S.; Singh, S., (2008). Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int. J. Environ. Sci. Tech., 5(1), 99–106 (8 pages).

    CAS  Google Scholar 

  • Tucker, L. K.; Lewis, C., (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1–10 (10 Pages).

    Article  Google Scholar 

  • Torn, M. S.; Trumbmore, S. E.; Chadwick, O. A.; Vitousek, P. M.; Hendricks, D. M., (1997). Mineral control of soil organic carbon storage and turnover. Nature, 389(6647), 170–173 (4 pages).

    Article  CAS  Google Scholar 

  • Wada, K.; Aomine, S., (1973). Soil development during the Quaternary. Soil Sci., 116(3), 170–177 (8 pages).

    Article  CAS  Google Scholar 

  • Walkley, A.; Black, I. A., (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic titration method. Soil Sci., 37, 29–38 (10 pages).

    Article  CAS  Google Scholar 

  • Willms, C.; Lia, Z.; Allen, L.; Evans, C. V., (2004). Desorption of cesium from kaolinite and illite using alkylammonium salts. Appl. Clay Sci., 25(3–4), 125–133 (9 pages).

    Article  CAS  Google Scholar 

  • Zornoza, R.; Mataix-Solera, J.; Guerrero, C.; Arcenegui, V.; Mayoral, A. M.; Morales, J.; Mataix-Beneyto, J., (2007a). Soil properties under natural forest in the Alicante Province of Spain. Geoderma, 142(3–4), 334–341 (8 pages).

    Article  CAS  Google Scholar 

  • Zornoza, R.; Mataix-Solera, J.; Guerrero, C.; Victoria, A.; García-Orenes, F.; Mataix, B.; Morugán, A., (2007b). Evaluation of soil quality using multiple lineal regression based on physical, chemical and biochemical properties. Sci. Total Environ., 378(1–2), 233–237 (5 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Brahim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brahim, N., Blavet, D., Gallali, T. et al. Application of structural equation modeling for assessing relationships between organic carbon and soil properties in semiarid Mediterranean region. Int. J. Environ. Sci. Technol. 8, 305–320 (2011). https://doi.org/10.1007/BF03326218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326218

Keywords

Navigation