Skip to main content
Log in

Renal function in community-dwelling frail elderly. Comparison between measured and predicted glomerular filtration rate in the elderly and proposal for a new cystatin C-based prediction equation

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aims: There is a great need to evaluate renal function regularly in elderly people. This study aimed at analyzing renal function in stable, community-dwelling elderly people of 75 years and over, to compare measured and predicted glomerular filtration rates (GFR) and to develop an accurate prediction equation for this age group. Methods: Forty-five ambulatory elderly people in stable health in ordinary living were randomly selected into four age-classes, aged 75–95. Demographic data, personal activities of daily living, continuous drug prescriptions, body composition, blood pressure and blood chemistry were analysed. GFR was measured as Iohexol clearance based on three time-points 3, 4 and 7 hours after lohexol injection. Results: Mean GFR was well preserved in all four age-classes. The GFR range was 18–83 mL/min and declined with age. The Cockcroft-Gault prediction equation systematically underestimated measured GFR. A new ‘GFRA’ prediction equation is presented, based on the inverse of serum cystatin C and independent of gender, body surface area, body weight, lean body mass or serum creatinine. The proposed equation underestimated measured GFR with a mean of only 0.1 mL/min, had better precision compared with the Cockcroft-Gault equation, and was evaluated by the method of cross-validation. Conclusions: GFR exhibits extensive heterogeneity in frail, community-dwelling elderly people. The proposed GFRA was clearly more precise than the Cockcroft-Gault prediction equation in the study group. However, it needs to be validated in a larger population of elderly subjects, including more individuals in stable health with substantially reduced renal function in whom GFR is measured by a reference method with adequate sampling time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hazzard WR, Blass JP, Ettinger WH Jr, Halter JB, Ouslander JG. Text book: Principles of Geriatric Medicine and Gerontology. New York, USA: McGraw-Hill 1999

    Google Scholar 

  2. Granerus G, Aurell M. Reference values for 51Cr-EDTA clearance as a measure of glomerular filtration rate. Scand J Clin Lab Invest 1981; 41: 611–6.

    Article  PubMed  CAS  Google Scholar 

  3. Price CP, Finney H. Developments in the assessment of glomerular filtration rate. Clin Chim Acta 2000; 297: 55–66.

    Article  PubMed  CAS  Google Scholar 

  4. Sterner G, Frennby B, Hultberg B, Almen T. Iohexol clearance for GFR-determination in renal failure — single or multiple plasma sampling? Nephrol Dial Transplant 1996; 11: 521–5.

    Article  PubMed  CAS  Google Scholar 

  5. Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights from old concepts. Clin Chem 1992; 38: 1933–53.

    PubMed  CAS  Google Scholar 

  6. Rowe JW, Andres R, Tobin JD, Norris AH, Shock NW. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. J Gerontol 1976; 31: 155–63.

    Article  PubMed  CAS  Google Scholar 

  7. Lamb EJ, O’Riordan SE, Delaney MP. Kidney function in older people: pathology, assessment and managment. Clin Chim Acta 2003; 334: 25–40.

    Article  PubMed  CAS  Google Scholar 

  8. Newman DJ. Cystatin C. Personal view. Ann Clin Biochem 2002; 39: 89–104.

    Article  PubMed  CAS  Google Scholar 

  9. Lim WH, Lim EM, McDonald S. Lean body mass-adjusted Cock-croft and Gault formula improves the estimation of glomerular filtration rate in subjects with normal-range serum creatinine. Nephrology 2006; 11: 250–6.

    Article  PubMed  CAS  Google Scholar 

  10. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41.

    Article  PubMed  CAS  Google Scholar 

  11. Fehrman-Ekholm I, Skeppholm L. Renal function in the elderly (>70 years old) measured by means of iohexol clearance, serum creatinine. serum urea and estimated clearance. Scand J Urol Nephrol 2004; 38: 73–7.

    Article  PubMed  CAS  Google Scholar 

  12. Grubb A, Simonsen O, Sturfelt G, Truedsson L, Thysell H. Serum concentration of cystatin C, factor D and ß2-microglobulin as a measure of glomerular filtration rate. Acta Med Scand 1985; 218: 499–503.

    Article  PubMed  CAS  Google Scholar 

  13. Akner G, Lammes E, Rydwik E, Engelheart S. ”Projekt Seniorstaden Hallen”". Report from a questionnaire study regarding nutrition and physical activity to all individuals over 75 years in Solna City in the summer of 2002, www.gunnar-akner.se (in Swedish).

  14. Callahan CM, Unverzagt FW, Hui SL, Perkins AJ, Hendrie HC. Six-item screener to identify cognitive impairment among potential subjects for clinical research. Med Care 2002; 40: 771–81.

    Article  PubMed  Google Scholar 

  15. Rydwik E, Lammes E, Frändin K, Akner G. Effects of a physical and nutritional intervention program for frail elderly people over age 75. A randomized controlled pilot treatment trial. Aging Clin Exp Res 2008; 20: 159–70.

    Article  PubMed  Google Scholar 

  16. Grimby G, Gudjonssson G, Rodhe M, Sunnerhagen KS, Sundh V, Ostensson ML. The functional independence measure in Sweden: Experience for outcome measurement in rehabilitation medicine. Scand J Rehab 1996; 28: 51–62.

    CAS  Google Scholar 

  17. Edwards DAW, Hammond WH, Healy MJR, Tanner JM, Whitehouse RH. Design and accuracy of callipers for measuring subcutaneous tissue thickness. Br J Nutr 1955; 9: 133–43.

    Article  PubMed  CAS  Google Scholar 

  18. Siri WE. Body composition from fluid spaces and density: analysis of methods. In: Techniques for Measuring Body Composition. Washington DC: National Academy of Sciences. National Research Council: 1961, 223–44.

    Google Scholar 

  19. Durnin JVGA, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 1974; 32: 77–97.

    Article  PubMed  CAS  Google Scholar 

  20. MacDougall JD, Brittain M, MacDonald JR, et al. Validity of predicting mean arterial blood pressure during exercise. Med Sci Sports Exerc 1999; 31: 1876–9.

    Article  PubMed  CAS  Google Scholar 

  21. Eriksson C-G, Kallner A. Glomerular filtration rate: a comparison between Cr-EDTA and a single sample technique with a non-ionic contrast agent. Clin Biochem 1991; 24: 261–4.

    Article  PubMed  CAS  Google Scholar 

  22. Bröchner-Mortensen J. A simple method for the determination of glomerular filtration rate. Scand J Clin Lab Invest 1972; 30: 271–4.

    Article  PubMed  Google Scholar 

  23. Jacobsson L. A method for the calculation of renal clearance based on a single plasma sample. Clin Physiol 1983; 3: 297–305.

    Article  PubMed  CAS  Google Scholar 

  24. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med 1987; 317: 1098.

    PubMed  CAS  Google Scholar 

  25. Grubb A, Björk J, Lindström V, Sterner G, Bondesson P, Nyman U. A cystatin C-based formula without anthropometric variables estimates glomerular filtration rate better than creatinine clearance using the Cockcroft-Gault formula. Scand J Clin Lab Invest 2005; 65: 153–62.

    Article  PubMed  CAS  Google Scholar 

  26. Hjorth JSU. Computer intensive statistical methods, validation, model selection and bootstrap. Boca Raton London, 1994.

  27. World Health Organisation. The Anatomical Therapeutic Chemical Classification System with Defined Daily Doses (ATC/DDD). URL: http://www.who.int/classifications/atcddd/en.

  28. National Kidney Foundation — K/DOQI. Clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis 2002; 39, S1–266.

    Article  Google Scholar 

  29. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: third national health and nutrition examination survey. Am J Kidney Dis 2003; 41: 1–12.

    Article  PubMed  Google Scholar 

  30. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 2002; 40: 221–6.

    Article  PubMed  CAS  Google Scholar 

  31. Stabuc B, Vrhovec L, Stabuc-Silih M, Cizej TE. Improved prediction of decreased creatinine clearance by serum cystatin C: use in cancer patients before and during chemotherapy. Clin Chem 2000; 46: 193–7.

    PubMed  CAS  Google Scholar 

  32. Tan GD, Lewis AV, James TJ, Altmann P, Taylor RP, Levy JC. Clinical usefulness of cystatin C for the estimation of glomerular filtration rate in type 1 diabetes: reproducibility and accuracy compared with standard measures and iohexol clearance. Diabetes Care 2002; 25: 2004–9.

    Article  PubMed  CAS  Google Scholar 

  33. Mussap M, Dalla Vestra M, Fioretto P, et al. Cystatin is a more sensitive marker than creatinine for the estimation of GFR in type 2 diabetic patients. Kidney Int 2002; 61: 1453–61.

    Article  PubMed  CAS  Google Scholar 

  34. Mangge H, Liebmann P, Tanil H, et al. Cystatin C, an early indicator for incipient renal disease in rheumatoid arthritis. Clin Chim Acta 2000; 300: 195–202.

    Article  PubMed  CAS  Google Scholar 

  35. Woitas P, Stoffel-Wagner B, Flommersfeld S, et al. Correlation of serum concentration of cystatin C and creatinine to inulin clearance in liver cirrhosis. Clin Chem 2000; 46: 712–5.

    PubMed  CAS  Google Scholar 

  36. Risch L, Blumberg A, Huber A. Rapid and accurate assessment of glomerular filtration rate in patients with renal transplants using cystatin C. Nephrol Dial Transplant 1999; 14: 1991–6.

    Article  PubMed  CAS  Google Scholar 

  37. Hojs R, Bevc S, Antolinc B, Gorenjak M, Puklavec L. Serum cystatin C as an endogenous marker of renal function in the elderly. Int J Clin Pham Res 2004; 24: 49–54.

    CAS  Google Scholar 

  38. O’Riordan SE, Webb MC, Stowe HJ, et al. Cystatin C improves the detection of mild renal dysfunction in older patients. Ann Clin Biochem 2003; 40: 648–55.

    Article  PubMed  Google Scholar 

  39. Riser D, Ritz E. Serum cystatin C concentration as a marker of renal dysfunction in the elderly. Am J Kidney Dis 2001; 37: 79–83.

    Google Scholar 

  40. van den Noortgate NJ, Janssens WH, Delanghe JR, Afschrift MB, Lameire NH. Serum cystatin C concentration compared with other markers of glomerular filtration rate in the old old. J Am Geriatr Soc 2002; 50: 1278–82.

    Article  Google Scholar 

  41. Burkhardt H, Bojarsky G, Gretz N, Gladisch R. Creatinine clearance, Cockcroft-Gault formula and cystatin C: estimators of true glomerular filtration rate in the elderly? Gerontology 2002; 48: 140–6.

    Article  PubMed  Google Scholar 

  42. Gaspari F, Guerini E, Perico N, Mosconi L, Ruggenenti P, Remuzzi G. Glomerular filtration rate determined from a single plasma sample after intravenous iohexol injection: is it reliable? J Am Soc Nephrol 1996; 7: 2689–93.

    PubMed  CAS  Google Scholar 

  43. Lindeman RD. Is the decline in renal function with normal aging inevitable? Geriatr Nephrol Urol 1998; 8: 7–9.

    Article  PubMed  CAS  Google Scholar 

  44. Riser D, Franek E, Ritz E. Renal function in the elderly — is the dogma of an inexorable decline in renal function correct? Nephrol Dial Transplant 1997; 12: 1553–5.

    Article  Google Scholar 

  45. Larsson M. Jagenburg R. Landahl S. Renal function in an elderly population. Scand J Clin Lab Invest 1986; 46: 593–8.

    Article  PubMed  CAS  Google Scholar 

  46. Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 1985; 33: 278–85.

    PubMed  CAS  Google Scholar 

  47. Jayagopal V, Keevil BG, Atkin SL, Jennings PE, Kilpatrick ES. Paradoxical changes in cystatin C and serum creatinine in patients with hypo- and hyperthyroidism. Clin Chem 2003; 49: 680–1.

    Article  PubMed  CAS  Google Scholar 

  48. Lamb E, Stowe H. Rheumatoid factor can interfere with cystatin C measurement. Ann Clin Biochem 2003; 40: 195–6.

    PubMed  Google Scholar 

  49. Wasén E, Isoaho R, Mattila K, Vahlberg T, Kivelä S-L, Irjala K. Serum Cystatin C in the aged: relationships with health status. Am J Kidney Dis 2003; 42: 36–43.

    Article  PubMed  Google Scholar 

  50. Macdonald J, Marcora S, Jibani M, et al. GFR estimation using cystatin C is not independent of body composition. Am J Kidn Dis 2006 48: 712–9.

    Article  CAS  Google Scholar 

  51. Vinge E, Lindergård B, Nilson-Ehle P, Grubb A. Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand J Clin Lab Invest 1999; 59: 587–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Akner MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Törner, A., Odar-Cederlöf, I., Kallner, A. et al. Renal function in community-dwelling frail elderly. Comparison between measured and predicted glomerular filtration rate in the elderly and proposal for a new cystatin C-based prediction equation. Aging Clin Exp Res 20, 216–225 (2008). https://doi.org/10.1007/BF03324773

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324773

Keywords

Navigation