Skip to main content
Log in

Effect of six candidate genes on early aging in a French population

  • Original Articles
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aims: The objective of this study was to examine the association between an aging indicator previously defined from a nationwide population study, and lipids and apolipoproteins, angiotensin converting enzyme, paraoxonase activities, and six candidate genes related to the aging process. Methods: Two hundred and fifty-six healthy Caucasian men (69.8±4.0 years) were included in the study. Total cholesterol, triglycerides, HDL-cholesterol, lipoprotein(a), apolipoprotein A1, B and E concentrations, and the activities of paraoxonase, arylesterase, and angiotensin-converting enzymes were determined by standardized laboratory methods. A multiplex assay was used to genotype the studied polymorphisms: apolipoprotein E, lipoprotein lipase, paraoxonase, methylenetetrahydrofolate reductase, cystathionine β-synthase and angiotensin-converting enzymes. Results: Paraoxonase polymorphism at codon 192 (Gln/Arg) was the only one significantly associated with the aging indicator, Gln homozygotes being more advanced in aging compared with Arg allele carriers. It was also observed that the aging indicator was positively correlated with serum concentrations of total cholesterol, triglycerides and apolipoprotein B, and negatively with the activities of basal and stimulated paraoxonase and arylesterase. Multiple regression analysis showed that triglycerides and basal paraoxonase activity explain 13.6% of the variance of the aging indicator. Conclusions: Triglyceride concentration and paraoxonase gene and activities may contribute to the aging process. Taking into account the smallness of the sample size, and the poor level of significance due to the implication of paraoxonase polymorphism at codon 192, these results need to be verified in further studies on a greater number of subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schächter F, Faure-Delanef L, Guenot F, et al. Genetic associations with human longevity at the APOE and ACE loci. Nature Genetics 1994; 6: 29–32.

    Article  PubMed  Google Scholar 

  2. Luoma PV. Gene activation, apolipoprotein AI-/high density lipoprotein, atherosclerosis prevention and longevity. Pharmacol Toxicol 1997; 81: 57–64.

    Article  PubMed  CAS  Google Scholar 

  3. Siest G, Pillot T, Regis-Bailly A, et al. Apolipoprotein E: An important gene and protein to follow in laboratory medicine. Clin Chem 1995; 41: 1068–86.

    PubMed  CAS  Google Scholar 

  4. Stengard JH, Weiss KM, Sing CF. An ecological study of association between coronary heart disease mortality rates in men and the relative frequencies of common allelic variations in the gene coding for apolipoprotein E. Hum Genet 1998; 103: 234–41.

    Article  PubMed  CAS  Google Scholar 

  5. Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer’s disease. Proc Natl Acad Sci USA 1995; 92: 4725–7.

    Article  PubMed  CAS  Google Scholar 

  6. Kervinen K, Savolainen MJ, Salokannel J, et al. Apolipoprotein E and B polymorphisms-longevity factors assessed in nonagenarians. Atherosclerosis 1994; 105: 89–95.

    Article  PubMed  CAS  Google Scholar 

  7. Blanche H, Cabanne L, Sahbatou M, Thomas G. A study of French centenarians: are ACE and APOE associated with longevity? Life Science 2001; 324: 129–35.

    CAS  Google Scholar 

  8. Tiret L, Rigat B, Visvikis S, et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet 1992; 51: 197–205.

    PubMed  CAS  Google Scholar 

  9. Krege JH, Moyer JS, Langenbach LL, et al. Angiotensinconverting enzyme gene and atherosclerosis. Arterioscler Thromb Vasc Biol 1997; 17:1245–50.

    PubMed  CAS  Google Scholar 

  10. Kang SS, Wong PW. Genetic and nongenetic factors for moderate hyperhomocyst(e)inemia. Atherosclerosis 1996; 119: 135–8.

    Article  PubMed  CAS  Google Scholar 

  11. Jemaa R, Fumeron F, Poirier O, et al. Lipoprotein lipase gene polymorphisms: associations with myocardial infarction and lipoprotein levels, the ECTIM study. J Lipid Res 1995; 36: 2141–6.

    PubMed  CAS  Google Scholar 

  12. Mackness MI, Mackness B, Durrington PN, Connelly PW, Hegele RA. Paraoxonase: biochemistry, genetics and relationship to plasma lipoproteins. Curr Opin Lipidol 1996; 7: 69–76.

    Article  PubMed  CAS  Google Scholar 

  13. Laplaud PM, Dantoine T, Chapman MJ. Paraoxonase as a risk marker for cardiovascular disease: facts and hypotheses. Clin Chem Lab Med 1998; 36: 431–41.

    Article  PubMed  CAS  Google Scholar 

  14. Gueguen R. Proposition of an aging indicator from general health examination in France. Clin Chem Lab Med 2002; 40: 235–9.

    Article  PubMed  CAS  Google Scholar 

  15. Eckerson HW, Wyte CM, La Du BN. The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet 1983; 35: 1126–38.

    PubMed  CAS  Google Scholar 

  16. Dingeon B, Thome H. Enzyme de conversion de l’angiotensine: dosage automatique sur analyseur centrifuge COBAS-BIO et COBAS-FARA, ou pourquoi faire cher et compliqué quand on peut faire simple et économique. ISB 1990; 16: 201–6 (in French).

    Google Scholar 

  17. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215.

    Article  PubMed  CAS  Google Scholar 

  18. Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 1990; 31: 545–8.

    PubMed  CAS  Google Scholar 

  19. Evans AE, Poirier O, Kee F, et al. Polymorphisms of the angiotensin-converting-enzyme in subjects who die from coronary heart disease. Q J Med 1994; 87: 211–4.

    PubMed  CAS  Google Scholar 

  20. Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10:111–3.

    Article  PubMed  CAS  Google Scholar 

  21. Cheng S, Pallaud C, Grow MA, et al. A multilocus genotyping assay for cardiovascular disease. Clin Chem Lab Med 1998; 36: 561–6.

    Article  PubMed  CAS  Google Scholar 

  22. Bohnet K, Régis-Bailly A, Vincent-Viry M, Gueguen R, Siest G, Visvikis S. Apolipoprotein E genotype ε4/ε2 in the STANISLAS cohort study. Dominance of the epsilon2 allele? Ann Hum Genet 1996; 60: 509–16.

    Article  PubMed  CAS  Google Scholar 

  23. Pallaud C, Maurice M, Cheng S, et al. Multilocus approach to cardiovascular risk. Scand J Clin Lab Invest 1999; 59: 168–76.

    Google Scholar 

  24. Sass C, Zannad F, Herbeth B, et al. Apolipoprotein E4, lipoprotein lipase C447 and angiotensin-I converting enzyme deletion alleles were not associated with increased wall thickness of carotid and femoral arteries in healthy subjects from the Stanislas cohort. Atherosclerosis 1998; 140: 89–95.

    Article  PubMed  CAS  Google Scholar 

  25. Siest G, Visvikis S, Herbeth B, et al. Objectives, design and recruitment of a familial and longitudinal cohort for studying geneenvironment interactions in the field of cardiovascular risk: the Stanislas cohort. Clin Chem Lab Med 1998; 36: 35–42.

    PubMed  CAS  Google Scholar 

  26. Mackness B, Durrington PN, Mackness MI. Human serum paraoxonase. Gen Pharmacol 1998; 31: 329–36.

    Article  PubMed  CAS  Google Scholar 

  27. Heijmans BT, Westendorp RGJ, Lagaay AM, Knook DL, Kluft C, Slagboom PE. Common paraoxonase gene variants, mortality risk and fatal cardiovascular events in elderly subjects. Atherosclerosis 2000; 149: 91–7.

    Article  PubMed  CAS  Google Scholar 

  28. Brattström L, Zhang Y, Hurtig M, et al. A common methylenetetrahydrofolate reductase gene mutation and longevity. Atherosclerosis 1998; 141: 315–19.

    Article  PubMed  Google Scholar 

  29. Heijmans BT, Westendorp RGJ, Slagboom PE. Common gene variants, mortality and extreme longevity in humans. Exp Gerontol 2000; 35: 865–77.

    Article  PubMed  CAS  Google Scholar 

  30. Strandberg TE, Valvanne J, Erkinjuntti T, Sorva A, Tilvis RS. Serum lipids, health, and one-year mortality in randomized age cohorts of 75, 80, and 85 years: the Helsinki Ageing Study. Nutr Metab Cardiovasc Dis 1992; 2: 101–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Siest Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Y., Gueguen, R., Vincent-Viry, M. et al. Effect of six candidate genes on early aging in a French population. Aging Clin Exp Res 15, 111–116 (2003). https://doi.org/10.1007/BF03324487

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324487

Key words

Navigation