Skip to main content
Log in

Of mice and mutations: Phenotypic effects of the diabetic db/db and ob/ob mutations on the skull and teeth of mice

  • Research
  • Published:
European Archives of Paediatric Dentistry Aims and scope Submit manuscript

Summary

Aim: To compare the phenotypic appearance of the skull bones and teeth of wild type C57BL/6J mice with that of diabetic leptin-deficient (ob/ob) and diabetic leptin receptor-deficient (db/db) mice used as models for diabetes. Study design and methods: Skulls were extracted from the carcasses of mice belonging to wild-type C57B/6J mice, db/db mice on a C57BLKS/J background, and ob/ob mice on a C57B/6J background. After removal of overlying tissue, the skulls and mandibles were then left to dehydrate and examined for phenotypic variations in structure and wear. Results: Bone surfaces of the skulls of wild type mice had a whiter and smoother surface compared with a yellowish colour with a grainy texture in the two mutant strains. The frontal, parietal and occipital bones were translucent in the two mutant strains. Breakages of the zygomatic arches and mandibles were more common in the ob/ob and db/db mice than in the wild type mice. Half of the teeth of the db/db mice and 90% teeth of the ob/ob mice showed considerable wear compared with marginal wear in the wild type mice. Conclusions: These observations suggested that the teeth of the two diabetic mutant strains are exhibiting considerable signs of hypomineralization with increased fragility and decreased bone thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler R Wegner H, Bohatka L. Influence of age and duration of diabetes on dental development in diabetic children. J Dent Res 1973;52:535–537.

    Article  PubMed  Google Scholar 

  • Albrecht M, Takats R, Fosse G, Sapi Z, Banoczy J. Dental enamel hardness tests in diabetics. Fogorv Sz 1991;84:363–366.

    PubMed  Google Scholar 

  • Atar M, Atar-Zwillenberg DR, Verry P, Spornitz UM. Defective enamel ultra-structure in diabetic rodents. Int J Paediatr Dent 2004;14:301–307.

    Article  PubMed  Google Scholar 

  • Atar M, Davis GR, Verry P, Wong FSL. Enamel mineral concentration in diabetic rodents assessed by 3-D x-ray microtomography. Eur Arch Paediatr Dent 2007:8(4):195–200.

    Article  PubMed  Google Scholar 

  • Balint E, Szabo R Marshall CF, Sprague SM. Glucose-induced inhibition of in vitro bone mineralization. Bone 2001;28:21–28.

    Article  PubMed  Google Scholar 

  • Bonds DE, Larson JC, Schwartz AV, et al. Risk of fracture among women with type 2 diabetes: the women’s health initiative observational study. J Clin Endocrinol Metab 2006;27[Epub ahead of print].

    Google Scholar 

  • Cara JF, Chaiken RL. Type 2 diabetes and the metabolic syndrome in children and adolescents. Curr Diab Rep 2006;6:241–250.

    Article  PubMed  Google Scholar 

  • Carnevale V, Romagnoli E, D’Erasmo E. Skeletal involvement in patients with diabetes mellitus. Diabetes Metab Rev 2004;20:196–204.

    Article  Google Scholar 

  • Chen, H, Charlat O, Tartaglia LA, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996;84:491–495.

    Article  PubMed  Google Scholar 

  • Cooper ME, Bonnet F, Oldfield M, Jandeleit-Dahm K. Mechanisms of diabetic vasculopathy: An overview. Am J Hypertens 2001;14:475–486.

    Article  PubMed  Google Scholar 

  • El-Bialy T, Aboul-Azm SF, El Sakhawy M. Study of craniofacial morphology and skeletal maturation in juvenile diabetics (type I). Am J Orthod Dentofacial Orthop 2000;118:189–195.

    Article  PubMed  Google Scholar 

  • Ford ES, Williamson DF, Liu S. Weight change and diabetes incidence: Findings from a national cohort of US adults. Am J Epidem 1997;146:214–222.

    Article  Google Scholar 

  • Giglio MJ, Lama MA. Effect of experimental diabetes on mandible growth in rats. Eur J Oral Sci 2001;109(3):193–197.

    Article  PubMed  Google Scholar 

  • Grahnen H, Moller EB, Bergstrom AL. Maternal diabetes and changes in the hard tissues of primary teeth. II. A further clinical study. Caries Res 1968;2:333–337.

    Article  PubMed  Google Scholar 

  • Gunczler P, Lanes R, Paoli M, et al. Decreased bone mineral density and bone formation markers shortly after diagnosis of clinical type 1 diabetes mel-litus. J Pediatr Endocrinol Metab 2001;14:525–528.

    Article  PubMed  Google Scholar 

  • Harris MI. Diabetes in America: epidemiology and scope of the problem. Diabetes Care. 1998;21:C11–C14.

    PubMed  Google Scholar 

  • Hummel, KP, Dickie MM, and Coleman DL. Diabetes, a new mutation in the mouse. Science 1966;153:1127–1128.

    Article  PubMed  Google Scholar 

  • Hummel, KP, Coleman DL, and Lan PW. The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL/KsJ and C57BL/6J strains. Biochem Genet 1971;7:1–13.

    Article  Google Scholar 

  • Karim AC. An ultrastructural study of the effect of streptozotocin on the secretory ameloblasts of the rat incisor. Anat Anz 1983;153:119–136.

    PubMed  Google Scholar 

  • Krakauer JC, McKenna MJ, Buderer NF, et al. Bone loss and bone turnover in diabetes. Diabetes 1995;44:775–782.

    Article  PubMed  Google Scholar 

  • Lalla RV, D’Ambrosio JA. Dental Management Considerations for the Patient with Diabetes Mellitus. J Am Dent Assoc 2001;132(10):1425–1432.

    PubMed  Google Scholar 

  • Lee GH, Proenca R, Montez JM, et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996;379:632–635.

    Article  PubMed  Google Scholar 

  • Madiehe AM, Herbert S, Mitchell TD, and Harris RBS. Strain-dependent stimulation of growth in leptin-treated obese db/db mice. Endocrinology 2002;143:3875–3883.

    Article  PubMed  Google Scholar 

  • Miao J, Brismar K, Nyren O, Ugarph-Morawski A, Ye W. Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care 2005;28:2850–2855.

    Article  PubMed  Google Scholar 

  • Noren J, Grahnen H, Magnusson BO. Maternal diabetes and changes in the hard tissues of primary teeth. III. A histologic and microradiographic study. Acta Odontol Scand 1978;36:127–135.

    Article  PubMed  Google Scholar 

  • Noren JG. Microscopic study of enamel defects in deciduous teeth of infants of diabetic mothers. Acta Odontol Scand 1984;42:153–156.

    Article  PubMed  Google Scholar 

  • Sato K, Hattori M, Aoba T. Disturbed enamel mineralization in a rat incisor model. Adv Dent Res 1996;10:216–224.

    Article  PubMed  Google Scholar 

  • Schwartz AV. Diabetes mellitus: Does it affect bone? Calcif Tissue Int 2003;73:515–519.

    Article  PubMed  Google Scholar 

  • Seow WK, Perham S. Enamel hypoplasia in prematurely-born children: A scanning electron microscopic study. J Pedod 1990;14:235–239.

    PubMed  Google Scholar 

  • Verhaeghe J, van Bree R, van Herck E, et al. Pathogenesis of fetal hypomin-eralization in diabetic rats: Evidence for delayed bone maturation. Pediatr Res1999;45:209–217.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Atar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atar, M., Yasmin, R., Sharma, R. et al. Of mice and mutations: Phenotypic effects of the diabetic db/db and ob/ob mutations on the skull and teeth of mice. Eur Arch Paediatr Dent 9, 37–40 (2008). https://doi.org/10.1007/BF03321594

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321594

Key Words

Navigation