Skip to main content

Characterization of Bone Tissue and Bone Morphology in Taurine Transporter Knockout Mice

  • Chapter
  • First Online:
Taurine 12

Abstract

Taurine, a sulfur-containing amino acid, has been shown to protect against tissue damage. It is highly accumulated in bone cells, including osteoblasts, where it enhances bone tissue formation. The quality of bone is defined by its microarchitecture, accumulated microscopic damage, collagen quality, mineral crystal size, and turnover rate. In this study, the effects of taurine depletion on bone metabolism and bone quality were investigated in taurine transporter knockout (TauT−/−) mice. The bone volume and trabecular number of 20-month-old male TauT−/− and TauT+/+ mice were measured by micro-computed tomography, and bone tissues were observed using hematoxylin and eosin and immunohistochemical staining methods. In the TauT−/− mice, the bone area of the proximal region of the femur was significantly smaller than that in the TauT+/+ mice, and the bone volume and trabecular number of the femur neck were significantly lower. Although the bone mineral densities in the mid-diaphysis and proximal regions were lower in the TauT−/− mice, the difference was significant for the proximal region only. Moreover, taurine depletion decreased the mineral density and strength parameters in the cancellous bone. The results of this study suggest that taurine plays an important role in maintaining bone quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

Alkaline phosphatase

BMD:

Bone mineral density

BS:

Bone surface

BV:

Bone volume

DEXA:

Dual-energy X-ray absorptiometry

TauT:

Taurine transporter

Tb.N:

Trabecular number

Tb.Sp:

Trabecular separation

Tb.Th:

Trabecular thickness

TV:

Total volume

References

  • Baliou S, Kyriakopoulos AM, Goulielmaki M, Panayiotidis MI, Spandidos DA, Zoumpourlis V (2020) Significance of taurine transporter (TauT) in homeostasis and its layers of regulation (review). Mol Med Rep 22(3):2163–2173

    Article  CAS  Google Scholar 

  • Camerino DC, Tricarico D, Pierno S, Desaphy JF, Liantonio A, Pusch M, Burdi R, Camerino C, Fraysse B, De Luca A (2004) Taurine and Skeletal Muscle Disorders. Neurochem Res 29(1):135–142

    Article  CAS  Google Scholar 

  • Choi M-J (2009) Effects of taurine supplementation on bone mineral density in ovariectomized rats fed calcium deficient diet. Nutr Res Pract 3:108–113

    Article  CAS  Google Scholar 

  • Choi M-J (2017) Taurine may modulate bone in cholesterol fed estrogen deficiency-induced rats. Adv Exp Med Biol 975:1093–1102

    Article  Google Scholar 

  • Fritsch A, Hellmich C (2007) ’Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244(4):597–620

    Article  CAS  Google Scholar 

  • Gordon RE, Heller RF, Heller RF (1992) Taurine protection of lungs in hamster models of oxidant injury: a morphologic time study of paraquat and bleomycin treatment. Adv Exp Med Biol 315:319–328

    Article  CAS  Google Scholar 

  • Gupta R, Win T, Bittner S (2005) Taurine analogues: a new class of therapeutics: retrospect and prospects. Curr Med Chem 12(17):2021–2039

    Article  CAS  Google Scholar 

  • Han SY, Lee JR, Kwon YK, Jo MJ, Park SJ, Kim SC, Lee HS, Ku SK (2007) Ostreae Testa prevent ovariectomy-induced bone loss in mice by osteoblast activations. J Ethnopharmacol 114(3):400–405

    Article  Google Scholar 

  • Hirata H, Ueda S, Ichiseki T, Shimasaki M, Ueda Y, Kaneuji A, Kawahara N (2020) Taurine inhibits glucocorticoid-induced bone mitochondrial injury, preventing osteonecrosis in rabbits and cultured osteocytes. Int J Mol Sci 21(18):6892

    Article  CAS  Google Scholar 

  • Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89(1):193–277

    Article  CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    Article  CAS  Google Scholar 

  • Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M, Schaffer SW, Fujio Y, Azuma J (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937

    Article  CAS  Google Scholar 

  • Jeon SH, Lee MY, Kim SJ, Joe SJ, Kim GB, Kim IS, Kim NS, Hong CU, Kim SZ, Kim JS, Kang HS (2007) Taurine increases cell proliferation and generates an increase in [Mg2+]i accompanied by ERK 1/2 activation in human osteoblast cells. FEBS Lett 581:5929–5934

    Article  CAS  Google Scholar 

  • Kato T, Okita S, Wang S, Tsunekawa M, Ma N (2015) The effects of taurine administration against inflammation in heavily exercised skeletal muscle of rats. Adv Exp Med Biol 803:773–784

    Article  CAS  Google Scholar 

  • Klibanski A, Adams-Campbell L, Bassford T, Blair NS (2001) Osteoporosis prevention, diagnosis, and therapy. J Am Med Assoc 285(6):785–795

    Article  Google Scholar 

  • Lotz JC, Cheal EJ, Hayes WC (1991) Fracture prediction for the proximal femur using finite element models: Part I--Linear analysis. J Biomech Eng 113(4):353–360

    Article  CAS  Google Scholar 

  • Lou J, Han D, Yu H, Yu G, Jin M, Kim SJ (2018) Cytoprotective effect of taurine against hydrogen peroxide-induced oxidative stress in umr-106 cells through the wnt/β-catenin signaling pathway. Biomol Ther 26(6):584–590

    Article  CAS  Google Scholar 

  • Martiniakova M, Sarocka A, Babosova R, Galbavy D, Kapusta E, Goc Z, Formicki G, Omelka R (2019) Bone microstructure of mice after prolonged taurine treatment. Physiol Res 68:519–523

    Article  CAS  Google Scholar 

  • Moon PD, Jeong HJ, Kim HM (2012) Effects of schizandrin on the expression of thymic stromal lymphopoietin in human mast cell line HMC-1. Life Sci 91(11–12):384–388

    Article  CAS  Google Scholar 

  • Park S, Kim H, Kim SJ (2001) Stimulation of ERK2 by taurine with enhanced alkaline phosphatase activity and collagen synthesis in osteoblast-like UMR-106 cells. Biochem Pharmacol 62:1107–1111

    Article  CAS  Google Scholar 

  • Pasantes-Morales H, Cruz C (1985) Taurine: a physiological stabilizer of photoreceptor membranes. Prog Clin Biol Res 179:371–381

    CAS  PubMed  Google Scholar 

  • Rasgado-Flores H, Mokashi A, Hawkins RA (2012) Na +-dependent transport of taurine is found only on the abluminal membrane of the blood-brain barrier. Exp Neurol 233(1):457–462

    Article  CAS  Google Scholar 

  • Roman-Garcia P, Quiros-Gonzalez I, Mottram L, Lieben L, Sharan K, Wangwiwatsin A, Tubio J, Lewis K, Wilkinson D, Santhanam B, Sarper N, Clare S, Vassiliou GS, Velagapudi VR, Dougan G, Yadav VK (2014) Vitamin B12-dependent taurine synthesis regulates growth and bone mass. J Clin Invest 124:2988–3002

    Article  CAS  Google Scholar 

  • Shigemi K, Tanaka K, Hayamizu K, Denbow DM, Furuse M (2011) L-serine decreases taurine concentration in the extracellular fluid of brain slices. Neurosci Med 2:268–274

    Article  CAS  Google Scholar 

  • Suleiman MS, Moffatt AC, Dihmis WC, Caputo M, Hutter JA, Angelini GD, Bryan AJ (1997) Effect of ischaemia and reperfusion on the intracellular concentration of taurine and glutamine in the hearts of patients undergoing coronary artery surgery. Biochim Biophys Acta 1324(2):223–231

    Article  CAS  Google Scholar 

  • Warskulat U, Flögel U, Jacoby C, Hartwig HG, Thewissen M, Merx MW, Molojayvi A, Heller-Stilb B, Schrader J, Haussinger D (2004) Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. FASEB J 18:577–579

    Article  CAS  Google Scholar 

  • Webster SJ, Jee S (1983) The skeletal tissues. In: Histology. Elsevier Biomedical Press, Amsterdam, pp 200–254

    Google Scholar 

  • Yuan LQ, Xie H, Luo XH, Wu XP, Zhou HD, Lu Y, Liao EY (2006) Taurine transporter is expressed in osteoblasts. Amino Acids 31:157–163

    Article  CAS  Google Scholar 

  • Yuan LQ, Lu Y, Luo XH, Xie H, Wu XP, Liao EY (2007) Taurine promotes connective tissue growth factor (CTGF) expression in osteoblasts through the ERK signal pathway. Amino Acids 32:425–430

    Article  CAS  Google Scholar 

  • Yuan LQ, Liu W, Cui RR, Wang D, Meng JC, Xie H, Wu XP, Zhou HD, Lu Y, Liao EY (2010) Taurine inhibits osteoclastogenesis through the taurine transporter. Amino Acids 39:89–99

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number JP20K08120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takenori Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kato, T., Ma, N., Ito, T., Nishimura, A., Sudo, A., Yamashita, T. (2022). Characterization of Bone Tissue and Bone Morphology in Taurine Transporter Knockout Mice. In: Schaffer, S.W., El Idrissi, A., Murakami, S. (eds) Taurine 12. Advances in Experimental Medicine and Biology, vol 1370. Springer, Cham. https://doi.org/10.1007/978-3-030-93337-1_20

Download citation

Publish with us

Policies and ethics