Skip to main content
Log in

Highly Efficient and Rapid Plant Regeneration in Citrus sinensis

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sweet orange (Citrus sinensis L Osbeck, var Nagpur) was explored for efficient multiple shoot regeneration and rooting in different media. The influence of phytohormones and carbon source on the in vitro morphogenesis of sweet orange epicotyl explants was investigated. Among the various concentrations and combinations of auxins (IAA and NAA) and cytokinins (BAP, Kn, Zn, and TDZ) tried, MT (Murashige and Tucker) medium fortified with benzylaminopurine (BAP) at 1 mg l−1 without auxin had a strong promotive effect on shoot regeneration, and elucidated best morphogenic response from one-month-old etiolated epicotyl explants. A 100% regeneration frequency was obtained, and multiple shoots with an average of 8.24 shoots per explant were produced on all of the explants. Root formation was seen in response to all the three auxins viz. IBA, NAA and IAA, but the best response with rapid induction was observed under the influence of indole butyric acid (IBA) at 1 mg l−1. Sucrose was observed to be at par with maltose as carbon source to support shoot regeneration. This study provided promising results, holds potential to be routinely employed for in vitro regeneration of important cultivars of Citrus spp, and can be incorporated for genetic transformation studies in citrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SAP:

benzylaminopurine

IAA:

indole-3-acetic acid

IBA:

indole-3-butyric acid

Kn:

kinetin

MT:

Murashige and Tucker medium

NAA:

naphthalene acetic acid

TDZ:

thidiazurone

Zn:

zeatin

References

  1. Kaneyoshi J, Kobayashi S, Nakamura Y, Shigemoto N & Doi Y, Plant Cell Rep, 13 (1994) 541.

    CAS  Google Scholar 

  2. Mehlenbacher SA, HortSci, 30 (1995) 466.

    Google Scholar 

  3. Vardi A, Spiegel-Roy P & Galun E, Plant Sci Lett, 4 (1975) 231.

    Article  Google Scholar 

  4. Vardi A, Proc Int Soc Citriculture, 1 (1981) 149.

    Google Scholar 

  5. Martin-Trillo M & Martinez-Zapater JM, Curr Opin Biotechnol, 13 (2002) 151.

    Article  PubMed  CAS  Google Scholar 

  6. Hammschlag F, Ritchie D, Werner D, Hashmil G, Krusberg L, Meyer R & Huettel R, Acta Hort, 392 (1995) 19.

    Google Scholar 

  7. Grosser JW, Jiang J, Louzada ES, Chandler JL & Gmitter FG Jr, HortSci, 33 (1998) 1060.

    Google Scholar 

  8. Ollitrault P, Dambier D & Luro F, In Somatic hybridization in Citrus, some new hybrids and cybrids, VIII Congress, Proc Int Soc Citriculture, Sun City Resort, South Africa (1996) p 98.

    Google Scholar 

  9. Paudyal KP & Haq N, In Vitro Cell Dev Biol Plant, 36 (2000) 511.

    Article  CAS  Google Scholar 

  10. Alskief J & Riedel M, Paris Acad Sci, 267 (1978) 2249.

    Google Scholar 

  11. Barlass M & Skene KGM, Sci Hortic, 17 (1982) 333.

    Article  Google Scholar 

  12. Duran-Vila N, Gogorcena Y, Ortega V, Ortiz J & Navarro L, Plant Cell Tiss Organ Cult, 29 (1992) 11.

    Article  Google Scholar 

  13. Goh CJ, Sim GE, Morales CL & Loh CS, Plant Cell Tiss Organ Cult, 43 (1995) 301.

    Google Scholar 

  14. Perez-Molphe-Belch E & Ochoa-Alejo N, HortSci, 32 (1997) 931.

    Google Scholar 

  15. Ghorbel R, Navarro L & Dura’ n-Vila N, J Hort Sci Biotechnol, 73 (1998) 323.

    Google Scholar 

  16. Garcý-a-Luis A, Bordo'n Y, Moreira-Dies JM, Molina RV & Guardiola JL, Ann Bot, 64 (1999) 715.

    Article  Google Scholar 

  17. Bordon Y, Guardiola JL & Garcia-Luis A, Ann Bot, 66 (2000) 159.

    Article  Google Scholar 

  18. Moreira-Dies JM, Molina RV, Bordo'n Y, Guardiola JL & Garcia-Luis A, Ann Bot, 65 (2000) 103.

    Article  Google Scholar 

  19. Moreira-Dies JM, Molina RV, Guardiola JL & Garcia-Luis A, Sci Hortic, 87 (2001) 275.

    Article  Google Scholar 

  20. Almeida WAS de, Mourão Filho F de AA, Mercies BMJ & Rodriguez APM, Sci Agri, 59 (2002) 35.

    Article  Google Scholar 

  21. Almeida WAS de, Mourão Filho F de AA, Mercies BMJ & Rodriguez APM, Biol Plant, 50 (2006) 321.

    Article  Google Scholar 

  22. Dejam M, Khosh-Khui M & Shekafandeh A, Intem J Agric Resour, 1 (2006) 14.

    Article  Google Scholar 

  23. Miah MN, Islam S & Hadiuzzaman S, Plant Tiss Cult Biotechnol, 16 (2008) 17.

    Google Scholar 

  24. Sauton A, Mouras A & Lutz A, HortSci, 57 (1982) 227.

    Google Scholar 

  25. Sim GE, Goh CJ & Loh CS, Plant Sci, 59 (1989) 203.

    Article  CAS  Google Scholar 

  26. Bhat SR, Chitralekha P & Chandel KPS, Plant Cell Tiss Organ Cult, 29 (1992) 19.

    Article  Google Scholar 

  27. Chaturvedi & Mitre , HortSci, 9 (1974) 118.

    Google Scholar 

  28. Gill MIS, Singh Z, Dhillon BS & Gosal SS, HortSci, 63 (1994) 231.

    Google Scholar 

  29. Tavano ECR, Stipp LCL, Muniz FR, Mourao Filho FAA & Mercies BMJ, Biol Plant, 53 (2009) 395.

    Article  Google Scholar 

  30. Almeida WAS de, Mourão Filho F de AA, Pino LE, Boscariol RL, Rodriguez APM & Mercies BMJ, Plant Sci, 164 (2003) 203.

    Article  CAS  Google Scholar 

  31. Cervera C, Navarro A, Navarro L & Peña L, Tree Physiol, 26 (2008) 55.

    Article  Google Scholar 

  32. Vardi A & Spiegel-Roy P, Theor Appl Genet, 62 (1982) 171.

    Article  Google Scholar 

  33. Ghorbel R, Navarro L & Dura’ n-Vila N, J Hort Sci Biotechnol, 73 (1998) 323.

    Google Scholar 

  34. Singh S & Rajam MV, Physiol Mot Biol Plants, 15 (2009) 3.

    Article  CAS  Google Scholar 

  35. Grosser JW & Chandler JL, HortSci, 21 (1986) 518.

    Google Scholar 

  36. Murashige T & Tucker DPH, In Proc First Int Citrus Symp Vol 3 (Chapman HD, Editor), University of California, Riverside (1969), pp 1155–1161.

    Google Scholar 

  37. Pérez-Molphe-Belch E & Ochoa-Alejo N, Plant Cell Rep, 17 (1998) 591.

    Article  Google Scholar 

  38. Garcý’ a-Luis A, Molina RV, Verona V, Castello S & Guardiola JL, Plant Cell Tiss Organ Cult, 65 (2006) 137.

    Article  Google Scholar 

  39. Guo DP, Zhu ZJ, Hu XX & Zang SJ, Plant Cell Tiss Organ Cult, 63 (2005) 123.

    Article  Google Scholar 

  40. Zhang JR, Zhou J, Wu T & Cao J, Plant Cell Tiss Organ Cult, 93 (2008) 323.

    Article  Google Scholar 

  41. Otoni WC & Teixeira SL, Revista-Ceres, 36 (1991) 17.

    Google Scholar 

  42. Kobayashi D, Nozawa T, Imai K, Nezu J, Tsuji A, & Tamai I, J Pharmacol Exp Ther, 306 (2003) 703.

    Article  PubMed  CAS  Google Scholar 

  43. Gu XF & Zhang JR, Plant Cell Rep, 23 (2005) 775.

    Article  PubMed  CAS  Google Scholar 

  44. Espinosa AC, HortSci, 41 (2006) 193.

    CAS  Google Scholar 

  45. Yeoman MM, In Plant tissue and cell culture (Street HE, Editor.), Blackwell, Oxford (1973) pp 31–58.

    Google Scholar 

  46. Gentile A, Monticelli S & Damiano C, Plant Cell Rep, 20 (2002) 1011.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manchikatla Venkat Rajam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Rajam, M.V. Highly Efficient and Rapid Plant Regeneration in Citrus sinensis . J. Plant Biochem. Biotechnol. 19, 195–202 (2010). https://doi.org/10.1007/BF03263340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263340

Key words

Navigation