Skip to main content
Log in

Comparative Analysis of RAPD and ISSR Markers for Characterization of Sesame (Sesamum indicum L) Genotypes

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The determination of genetic differences among crop genotypes has become the primary need to grant patent and the protection of Plant Breeder Rights (PBR). In the present study RAPD and ISSR markers were employed for the characterization of 16 sesame genotypes. Twenty six RAPD and 17 ISSR primers that generated clear and reproducible banding patterns amplified 194 and 163 bands, respectively among 16 sesame genotypes. Both RAPD and ISSR primers showed maximum discrimination power, and produced putative variety specific bands, which could be used for the identification of all the sesame genotypes, individually. However, only AG and CA based ISSR primers were found effective in the discrimination of genotypes. A poor correlation was observed between the matrices produced by RAPD and ISSR primers, which might be due to the array of different sites of the genome. Though, there was greater similarity among sesame genotypes (0.78 for RAPD and 0.71 for ISSR), the observed genetic diversity (0.22 for RAPD and 0.29 for ISSR), was found effective for the characterization of sesame genotypes. It is suggested that putative variety specific RAPD and ISSR markers could be converted to Codominant sequence characterized amplified region/sequence tagged site (SCAR /STS) markers to develop robust variety specific markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ISSR:

inter simple sequence repeat

RAPID:

random amplified polymorphic DNA

SCAR:

sequence characterized amplified region

STS:

sequence tagged site

References

  1. Johnson LA, Suleiman TM & Lusas EW, J Amer Oil Chem Soc, 56 (1979) 463.

    Article  CAS  Google Scholar 

  2. Bedigian D, David S & Jack R, Biochem Sys Eco, 13 (1985) 133.

    Article  CAS  Google Scholar 

  3. Bedigian D, Genet Resour Crop Evol, 50 (2003) 773.

    Article  Google Scholar 

  4. Shiro I & Teruhisa U, Euphytica, 93 (1997) 375.

    Article  Google Scholar 

  5. Kumar Vinod, Singh G, Sharma R & Sharma, SN, Indian J Plant Physiol, 12 (2007) 115.

    CAS  Google Scholar 

  6. Jana S & Pietrzak LN, Genetics, 119 (1988) 981.

    PubMed  CAS  Google Scholar 

  7. Chengyin L, Weihua L & Mingjum L, J Tea Sci, 12 (1992) 15.

    Google Scholar 

  8. Jelinski D E & Cheliak WM, Am J Bot, 79 (1992) 728.

    Article  Google Scholar 

  9. Botstein D, White RL, Skolnick MH & Davis RW, Am J Hum Genet, 32 (1980) 314.

    PubMed  CAS  Google Scholar 

  10. Tanksley SD, Young ND, Paterson AH & Bonierbale MW, Biotechnology, 7 (1989) 257.

    Article  CAS  Google Scholar 

  11. Miller JC & Tanksley SD, Theor Appl Genet, 80 (1990) 385.

    CAS  Google Scholar 

  12. Wang ZY, Second G & Tanksley SD, Theor Appl Genet, 83 (1992) 565.

    Article  Google Scholar 

  13. Beckmann JS & Soller M, Euphytica, 35 (1986) 111.

    Article  Google Scholar 

  14. Williams JGK, Kubelic AR, Livak KJ, Rafalski JA & Tingey SV, Nucleic Acids Res, 18 (1990) 6231.

    Article  Google Scholar 

  15. Welsh J & McClelland M, Nucleic Acids Res, 18 (1990) 7213.

    Article  PubMed  CAS  Google Scholar 

  16. Zietkiewicz E, Rafalski A & Labuda D, Genomics, 20 (1994) 176.

    Article  PubMed  CAS  Google Scholar 

  17. Wu KS & Tanksley SD, Mol Gen Genet, 2411 (1993) 225.

    Article  Google Scholar 

  18. Venkataramana Bhat K, Babraker PP & Lakhanpaul S, Euphytica, 110 (1999) 14.

    Article  Google Scholar 

  19. Ercan GA, Taskin M & Turgut K, Genet Resour Crop Evol, 52 (2004) 599.

    Article  Google Scholar 

  20. Kim M, Zur G, Danin-Poleg Y, Lee S, Shim K, Kang C & Kashi Y, Plant Breed, 121 (2002) 259.

    Article  CAS  Google Scholar 

  21. Doyle JJ & Doyle JL, Focus, 12 (1990) 13.

    Google Scholar 

  22. Anderson JA, Churchill GA, Autroque JE, Tanksley SD & Swells ME, Genome, 36 (1993) 181.

    Article  PubMed  CAS  Google Scholar 

  23. Tessier C, David J, This P, Boursiquot JM & Charrier A. Theor Appl Genet, 98 (1999) 171.

    Article  CAS  Google Scholar 

  24. Pavlicek A, Harda S & Flegr J, Folia Biol (Prague), 45 (1999) 97.

    CAS  Google Scholar 

  25. Awasthi AK, Nagaraja GM, Naik GV, Sriramana K, Thargavelu, K & Nagarju J, BMC Genetics, 141 (2004) 8.

    Google Scholar 

  26. Padmavathi N, Parminderjit K, AbuZafar B, George BT, Ray L & Umesh KR, In Proc XIII Intn Plant and Animal Genomes Conf, Town and Country Convention Centre, San Diego, CA (2005) p178.

    Google Scholar 

  27. Olufowote JO, Genome, 40 (1997) 370.

    Article  PubMed  CAS  Google Scholar 

  28. Sebastian LS, Hipolito LR & Garcia JS, J Breed Genet, 30 (1998) 73.

    Google Scholar 

  29. Ramakrishna W, Davierwala AP, Gupta VS & Ranjekar PK, Biochem Genet, 36 (1998) 323.

    Article  PubMed  CAS  Google Scholar 

  30. Morgante M & Olivieri, Am Plant J, 3 (1993) 175.

    Article  CAS  Google Scholar 

  31. Lagercrantz U, Ellegren H & Andersson L, Nucleic Acids Res, 21 (1993) 1111.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.N., Kumar, V. & Mathur, S. Comparative Analysis of RAPD and ISSR Markers for Characterization of Sesame (Sesamum indicum L) Genotypes. J. Plant Biochem. Biotechnol. 18, 37–43 (2009). https://doi.org/10.1007/BF03263293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263293

Key words

Navigation