Skip to main content
Log in

Transgenic indica Rice cv IR-50 Over-expressing Vigna aconitifolia Δ1-Pyrroline -5- Carboxylate Synthetase cDNA Shows Tolerance to High Salt

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Oryza sativa subspecies indica cultivar IR-50 was transformed with Vigna aconitifolia P5CS cDNA under the control of Ubiquitin (Ub) promoter and nos terminator using PDS 1000 He particle bombardment system. Integration of transgene was confirmed by Southern analysis. Transgene expressed itself making mRNA and protein as evidenced by Northern and Western analysis of T2 plants. Active nature of protein made was substantiated by over-accumulation of proline in transgenic plants as compared to control. Transgene followed a 3:1 Mendelian ratio of inheritance. Marker free plants could be obtained due to segregation between marker gene and gene of interest in T2 generation. The transgenic plants showed better root growth and biomass development when grown in 200 mM NaCl, while control plants died within 20 days of salt stress. In one of the transgenic line with single copy transgene, plasmid rescue and the sequence analysis of the genomic region suggests that the P5CS transgene has got integrated into a region of chromosome 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer JS, Science, 218 (1982) 443.

    Article  PubMed  CAS  Google Scholar 

  2. Hossain M, In Rice Research in Asia: Progress and Priorities, (RE Evenson, RW Herdt, M Hossain, Editors) IRRI, Philippines (1996) pp 17–33.

    Google Scholar 

  3. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K & Shinozaki K, Nature Biotechnol, 17 (1999) 287.

    Article  CAS  Google Scholar 

  4. Grover A, Sahi C, Sanam N & Grover A, Plant Sci, 143 (1999) 101.

    Article  CAS  Google Scholar 

  5. Xu DP, Duan XL, Wang BY, Hong BM, Ho THD & Wu R, Plant Physiol, 110 (1996) 249.

    PubMed  CAS  Google Scholar 

  6. Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dryer WE, Ho THD & Ou RD, Plant Sci, 155 (2000) 1.

    Article  PubMed  CAS  Google Scholar 

  7. Rahman M, Grover A, Peacock WJ, Dennis ES & Ellis MH, Aust J Plant Physiol, 28 (2001) 1231.

    CAS  Google Scholar 

  8. Roy M & Wu R, Plant Sci, 160 (2000) 869.

    Article  Google Scholar 

  9. Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK & Mori S, Nature Biotechnol, 19 (2001) 466.

    Article  CAS  Google Scholar 

  10. Saijo Y, Hata S, Kvozuka J, Shimamoto K & Izui K, Plant J, 23 (2000) 319.

    Article  PubMed  CAS  Google Scholar 

  11. Hirano HY & Sano Y, Plant Cell Physiol, 39 (1998) 807.

    Article  CAS  Google Scholar 

  12. Lilius G, Holmbers N & Buloco L, Biotechnology, 14 (1996) 177.

    Article  CAS  Google Scholar 

  13. Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N & Tyagi AK, Theor Appl Genet, 106 (2002) 51.

    PubMed  CAS  Google Scholar 

  14. Sheveleva E, Chmara W, Bohnert HJ & Jensen RG, Plant Physiol, 115 (1997) 1211.

    PubMed  CAS  Google Scholar 

  15. Tarczynski MC, Jensen RG & Bohnert HJ, Science, 259 (1993) 508.

    Article  PubMed  CAS  Google Scholar 

  16. Pilon-Smits EHA, Ebskamp MJM, Paul MJ, Leuken MJW, Weisbeek PJ & Smeekens SCM, Plant Physiol, 107 (1998) 125.

    Google Scholar 

  17. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV & Wu RJ, Proc Natl Acad Sci, USA, 99 (2002) 15898.

    Article  Google Scholar 

  18. Igarishi Y, Yoshiba Y, Sanada S, Yamaguchi-Shinozaki K, Wada K & Shinozaki K, Plant Mol Biol, 33 (1997) 857.

    Article  Google Scholar 

  19. Kishor PBK, Hong ZL, Miao GH, Hu CAA & Verma DPS, Plant Physiol, 108 (1995) 1387.

    PubMed  CAS  Google Scholar 

  20. Zhu B, Su J, Chang M, Verma DPS, Fan Yun-Liu & Wu, R, Plant Sci, 139 (1998) 41.

    Article  CAS  Google Scholar 

  21. Hong Zonglie, Lakkineni K, Zhang ZM, Verma DPS, Hong ZL & Zhang ZM, Plant Physiol, 122 (2000) 1129.

    Article  PubMed  CAS  Google Scholar 

  22. Barthakur S, Babu V & Bansal KC, J Plant Biochem Biotechnol, 10 (2001) 31.

    Article  CAS  Google Scholar 

  23. Smirnoff N & Cumbes QJ, Phytochemistry, 28 (1989) 1057.

    Article  CAS  Google Scholar 

  24. Saradhi PP, Alia, Arora S & Prasad KVSK, Biochem Biophys Res Commun, 209 (1995) 1.

    Article  PubMed  CAS  Google Scholar 

  25. Delauney AJ, & Verma, DPS, Plant J, 4 (1993) 215.

    Article  CAS  Google Scholar 

  26. Schobert B & Tschesche H, Biochim Biophys Acta, 541 (1978) 270.

    Article  PubMed  CAS  Google Scholar 

  27. Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakaburi Y, Yamaguci-Shinozaki K & Shinozaki K, Plant J, 18 (1999) 185.

    Article  PubMed  CAS  Google Scholar 

  28. Dellaporta SL, Wood J & Hicks JB, Plant Mol Biol Rep, 1 (1983) 19.

    Article  CAS  Google Scholar 

  29. Sambrook J, Fritsch EF & Maniatis T, Molecular cloning: A laboratory manual, Ed 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NewYork (1989).

    Google Scholar 

  30. Chomczynski P & Sacchi N, Anal Biochem, 162 (1987) 156.

    Article  PubMed  CAS  Google Scholar 

  31. Bates LS, Waldren RP, Teare ID, Plant Soil, 39 (1973) 205.

    Article  CAS  Google Scholar 

  32. Tyagi AK, Mohanty A, Bajaj S, Chaudhury A & Maheshwari SC, Crit Rev Biotechnol, 19 (1999) 41.

    Article  CAS  Google Scholar 

  33. Komari T, Hiei Y, Saito Y, Murai N & Kumashiro T, Plant J, 10 (1996) 165.

    Article  PubMed  CAS  Google Scholar 

  34. Chen L, Marmey P, Taylor NJ, Brizard Jean-Paul, Espinoza C, D’Cruz Patricia, Huet Have, Zhang S, de Kochko Alexandre, Beachy RN, & Fauquet CM, Nature Biotechnol, 16 (1998) 1060.

    Article  CAS  Google Scholar 

  35. DeNeve M, De Buck S, Jacobs A, Van Montagu M & Depicker A, Plant J, 11 (1997) 15.

    Article  CAS  Google Scholar 

  36. Svitashev S, Ananjev E & Somers DA, In Plant and Animal Genome VII Conference, San Diego, CA (1999) p 525.

    Google Scholar 

  37. Kohli A, Leech M, Vain P, Laurie DA & Christou P, Proc Natl Acad Sci, USA, 95 (1998) 7203.

    Article  PubMed  CAS  Google Scholar 

  38. Cahir J O’Kane & Walter J Gehring, Proc Natl Acad Sci, USA, 84 (1987) 9123.

    Google Scholar 

  39. Walden R, Fritze K, Hayashi H, Miklashevics E, Harling H & Schell J, Plant Mol Biol, 26 (1994) 1521.

    Article  PubMed  CAS  Google Scholar 

  40. Rommens CM, Rudenko GN, Dijwel PP, van Haaren MJ, Ouwerkek PB, Blok KM, Nijkamp HJ & Hille J, Plant Mol Biol, 21 (1992) 61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anoop, N., Gupta, A.K. Transgenic indica Rice cv IR-50 Over-expressing Vigna aconitifolia Δ1-Pyrroline -5- Carboxylate Synthetase cDNA Shows Tolerance to High Salt. J. Plant Biochem. Biotechnol. 12, 109–116 (2003). https://doi.org/10.1007/BF03263170

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263170

Keywords

Navigation