Skip to main content
Log in

Molar-Incisor-Hypomineralisation (MIH). A retrospective clinical study in Greek children. II. Possible medical aetiological factors

  • Published:
European Archives of Paediatric Dentistry Aims and scope Submit manuscript

Abstract

Aim: This was to examine the potential medical aetiological factors involved in the development of MIH. Methods: During the years 2003–2005, all MIH cases diagnosed according to set criteria were selected from the new patients clinic of a Community Dental Centre for Children (Athens). The age, gender and teeth involved were recorded. A control group of socio-demographically matched controls was also identified. The potential aetiological factors were retrieved through personal interview with the parents and from each child and mother’s medical book. Only verified aetiological factors were recorded. Evaluation of the correlation of affected teeth and the timing of the insult was performed in a separate group of 225 affected children aged 8–12 with their entire 12 ‘index’ teeth erupted. Results: From the 3,518, 5.5 to 12 years old children examined, 360 (10.2%) had MIH. Aetiology of MIH: 44 children (12.2%), presented without any relevant medical history, the remaining 316 (87.8%) recorded various medical problems associated with MIH, compared with 18.9% for controls. Perinatal (163, 33.6%) and postnatal (162, 33.9%) problems were the most frequently found and prenatal the least (33, 8.6%). For 42 children (11.7%) problems occurred in more than one chronological period, mainly during both the perinatal and postnatal period (11.1 %). The most common prenatal problem was repeated episodes of high fever (12/33), in the perinatal period birth by Caesarean section (92/163) and other birth complications (34/163). Various respiratory conditions (88/162), repeated episodes of high fever (31/162) and neonatal illness (28/162) were the commonly reported problems in the postnatal period. Many MIH cases presented with more than one medical problem during the peri-and postnatal period. Statistical analysis: Children with MIH recorded 68.9% more frequent medical problems than controls (p<0.0001). A positive correlation (p<0.001) between the total number and type of affected teeth with the timing of the insult was observed in the 225 MIH children with all their ‘index’ teeth erupted. Conclusion: Children with MIH present with more medical problems than controls during their prenatal, perinatal and postnatal period. The majority of these illnesses may produce hypocalcaemia, hypoxia and pyrexia to the child or the mother. The number of affected teeth was associated with the timing of the possible insult; children with prenatal, perinatal and postnatal problems present more affected teeth in increasing order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal R, Upadhyay M, Deorari AK, Paul VK. Hypocalcemia in the newborn. Indian J Pediatr. 2001; 68(10):973–5.

    Article  PubMed  Google Scholar 

  • Aine L, Backstrom MC, Maki R, et al. Enamel defects in primary and permanent teeth of children born prematurely. J Oral Pathol Oral Med 2000; 29:403–409.

    Article  Google Scholar 

  • Alaluusua S, Lukinmaa PL, Vartiainen T, et al. Polychlorinated dibenzo-p-dioxins and dibenzofurans via mother’s milk may cause developmental defects in the child’s teeth. Environ Toxicol Pharmacol 1996; 1:193–197.

    Article  PubMed  Google Scholar 

  • Alam M, Raza SJ, Sherali AR, Akhtar AS. Neonatal complications in infants born to diabetic mothers. J Coll Physicians Surg Pak. 2006; 16(3):212–5.

    PubMed  Google Scholar 

  • Amerongen van WE, Kreulen CM. Cheese molars: A pilot study of the etiology of hypocalcifications in first permanent molars. ASDC J Dent Child. 1995:266-269.

  • Banes PB, Thomson AP, Fraser WD, Hart CA. Hypocalcaemia in severe meningococcal infections. Arch Dis Child. 2000; 83(6):510–3.

    Article  Google Scholar 

  • Beentjes VEVM, Weerheijm GHJ, Grohen HJ. Factors involved in the aetiology of molar-incisor hypomineralisation (MIH). Eur J of Paediatr Dent. 2002;3(1):9–13.

    Google Scholar 

  • Behrman RE., Vaughan VC. Nelson’s Textbook of Pediatrics. 13th Edition. W.B.Saunders Philadelphia. 1987. 207–209, 870–871, 878–881.

    Google Scholar 

  • Brook AH., Smith JM. Aetiology of developmental defects of enamel: a prevalence and family study in East London, UK. Connect Tissue Res. 1998; 39:151–156.

    Article  PubMed  Google Scholar 

  • Cebekulu L, Buchmann EJ. Complications associated with cesarean section in the second stage of labor. Int J Gynaecol Obstet. 2006; 95(2):110–4.

    Article  PubMed  Google Scholar 

  • Chandra S, Ramji S, Thirupuram S. Perinatal asphyxia: multivariate analysis of risk factors in hospital births. Indian Pediatrics, 1997; 34(3):206–12.

    PubMed  Google Scholar 

  • Cyna AM, Andrew M, Emmett RS, Middleton P, Simmons SW. Techniques for preventing hypotension during spinal anaesthesia for caesarean section. Cochrane Database Syst Rev. 2006;18(4):CD002251. Review.

    Google Scholar 

  • Ess A, Laisi S, Sahlberg C, Lukinmaa P-L, Alaluusua S. Early Use of Amoxicillin May Cause Molar-Incisor-Hypomineralisation (MIH). Europ Archs Paediatr Dent 2008;9:225–228.

    Google Scholar 

  • Fearne J., Anderson P., Davis GR. 3D X-ray microscopic study of the extent of variations in enamel density in first permanent molars with idiopathic enamel hypomineralisation. Br Dent J. 2004;196(10):634–8

    Article  PubMed  Google Scholar 

  • Foldenauer A, Vossbeck S, Pohlandt F. Neonatal hypocalcaemia associated with rotavirus diarrhoea. Eur J Pediatr. 1998;157(10):838–42.

    Article  PubMed  Google Scholar 

  • Hansen AK, Wisborg K, Uldbjerg N, Henriksen TB. Risk of respiratory morbidity in term infants delivered by elective caesarean section: cohort study. Br Med J. 2008;336(7635):85–7.

    Article  Google Scholar 

  • Jalevik B, Noren JG. Enamel hypomineralisation of permanent first molars: a morphological study and survey of possible aetiological factors. In J Paediatr Dent 2000;10:278–289

    Article  Google Scholar 

  • Jalevik B., Obelius H., Dietz W., Noren J. Secondary ion mass spectrometry and X-ray microanalysis of hypomineralised enamel in human permanent first molars. Arch Oral Biol. 2001;46(3):239–47.

    Article  PubMed  Google Scholar 

  • Jalevik B, Noren JG, Klingberg G, Barregard L. Etiologic factors influencing the prevalence of demarcated opacities in permanent first molars in a group of Swedish children. Eur J Oral Sci 2001;109:230–234.

    Article  PubMed  Google Scholar 

  • Jalevik B., Klingberg GA. Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralisation of their permanent first molars. Int J Paediatr Dent. 2002;12(1):24–32.

    PubMed  Google Scholar 

  • Jasulaityte L, Veerkamp J.S, Weerheijm KL. Molar-incisor-hypomineralisation: review and prevalence data from a study of primary school children in Kaunas (Lithuania). Eur Arch Paediatr Dent. 2007; 8(2):87–94.

    Article  PubMed  Google Scholar 

  • Johnsen D, Krejci C, Hack M, Fanaroff A. Distribution of enamel defects and the association with respiratory distress in very low birthweight infants. J Dent Res. 1984; 63(1):59–64.

    Article  PubMed  Google Scholar 

  • Koivurova S, Hartikainen AL, Sovio U, et al. Growth, psychomotor development and morbidity up to 3 years of age in children born after IVF. Hum Reprod. 2003; 18(11):2328–36.

    Article  PubMed  Google Scholar 

  • Kreshover SJ, Clough OW. Prenatal influences on tooth development. II. Artificially induced fever in rats. J Dent Res. 1953; 32(4):565–77.

    Article  PubMed  Google Scholar 

  • Laisi S, Kiviranta H, Lukinmaa P-L, Vartiainen, T, Alaluusua, S. Exposure to PCDD/Fs and PCBs at prevailing levels is not associated with Molar-Incisor-Hypomineralisation. Europ Archs Paediatr Dent 2008:9:225–228

    Google Scholar 

  • Ludwig AK, Sutcliffe AG, Diedrich K, Ludwig M. Post-neonatal health and development of children born after assisted reproduction: a systematic review of controlled studies. Eur J Obstet Gynecol Reprod Biol. 2006;127(1):3–25.

    Article  PubMed  Google Scholar 

  • Lygidakis NA, Chaliasou A, Siounas G. Evaluation of composite restorations in hypomineralised permanent molars: a four year clinical study. Eur J Paediatr Dent 2003;3:143–148.

    Google Scholar 

  • Lygidakis NA, Dimou G, Marinou D, Gouva G. Aetiology of Molar-Incisor Hypomineralisation. A retrospective study of 151 children with the defect (abstract). 7th Congress of the European Academy of Paediatric Dentistry; Barcelona, Spain. 2004.

  • Lygidakis NA, Dimou G, Briseniou E. Molar-incisor hypomineralisation (MIH). Retrospective clinical study in Greek children. I. Prevalence and defect characteristics. Europ Archs Paediatr Dent. 2008;9:200–206.

    Google Scholar 

  • McBride, J. T. Pulmonary function changes in children after respiratory syncytial virus infection in infancy. J. Pediatr. 1999; 135:28–32.

    Article  PubMed  Google Scholar 

  • Marthu-Muju K, Wright TJ. Diagnosis and Treatment of Molar-Incisor-Hypomineralisation. Compedium. 2006; 604–611.

  • Moorrees CFA, Fanning EA, Hunt EE. Age Variation of Formation Stages for Ten Permanent Teeth. J. Dent. Res. 1963; 1490–1502.

  • Nanci A, Mocetti P, Sakamoto Y, et al. Morphological and immunocytochemical analyses on the effects of diet-induced hypocalcemia on enamel maturation in the rat incisor. J Histochem Cytochem. 2000; 48(8): 1043–58.

    Article  PubMed  Google Scholar 

  • Nelson-Piercy C. Treatment of nausea and vomiting in pregnancy. When should it be treated and what can be safely taken? Drug Saf. 1998; 19(2):155–64.

    Article  PubMed  Google Scholar 

  • Nikiforuk G., Fraser D. The etiology of enamel hypoplasia: a unifying concept. J Pediatr. 1981; 98(6):888–93.

    Article  PubMed  Google Scholar 

  • Norwitz ER, Robinson JN, Challis JRG. The control of labor. The New England J Med. 1999;18:660–666.

    Article  Google Scholar 

  • Ogden A.R, Pinhasi R,. White W.J. Gross Enamel Hypoplasia in Molars From Subadults in a 16th–18th Century London Graveyard. Am J of Phys Anthrop. 2007; 133:957–966.

    Article  Google Scholar 

  • Rosli A, Fanconi A. Neonatal hypocalcemia. “Early type” in low birth weight newborns. Helv Paediatr Acta 1973; 28:443–57.

    PubMed  Google Scholar 

  • Roussos DC, Panidis DK, Tsimas VS, Kourtis AH, Mamopoulos MA. Preeclampsia — eclampsia in Greece. Hellen Obstet Gynacol 2003; 15(1):37–43.

    Google Scholar 

  • Scarfone RJ, Pond K, Thompson K, Fall I. Utility of laboratory testing for infants with seizures. Pediatr Emerg Care. 2000; 16(5):309–12.

    Article  PubMed  Google Scholar 

  • Seow WK. A study of the development of the permanent dentition in very low birth weight children. Pediatr Dent 1996; 18:379–384.

    PubMed  Google Scholar 

  • Simmer JP. Dental Enamel Formation and Its Impact on Clinical Dentistry. Journal of Dental Education. 2001; 65(9): 896–905.

    PubMed  Google Scholar 

  • Sui W, Boyd C, Wright JT. Altered pH regulation during enamel development in the cystic fibrosis mouse incisor. J Dent Res 2003; 82:388–392

    Article  PubMed  Google Scholar 

  • Tsang RC, Donovan EF, Steichen JJ. Calcium physiology and pathology in the neonate. Pediatr. Clin N Am 1976; 23:611–626.

    Google Scholar 

  • Tung K, Fujita H, Yamashita Y, Takagi Y. Effect of turpentine-induced fever during the enamel formation of rat incisor. Arch Oral Biol. 2006; 51(6):464–70

    Article  PubMed  Google Scholar 

  • Yamaguti PM, Arana-Chavez VE, Acevedo AC. Changes in amelogenesis in the rat incisor following short-term hypocalcaemia. Arch Oral Biol. 2005, 50(2):185–8.

    Article  PubMed  Google Scholar 

  • Welbury RR. Paediatric Dentistry. Oxford University Press. 1997. pp11-12.

  • Weerheijm KL, Duggal M, Mejare I, et al. Judgment criteria for molar-incisor-hypomineralisation (MIH) in epidemiologic studies: a summary of the European meeting on MIH held in Athens. Eur J Pediatr Dent. 2003; 4:110–113

    Google Scholar 

  • Whitford GM, Angmar-Mansson B. Fluorosis-like effects of acidosis, but not NH4+ on rat incisor enamel. Caries Res. 1995; 29:20–25

    Article  PubMed  Google Scholar 

  • William V., Messer LB., Burrow MF. Molar-Incisor-hypomineralisation: Review and recommendations for clinical management. Pediatr Dent. 2006; 28(3) 224–232.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick A. Lygidakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lygidakis, N.A., Dimou, G. & Marinou, D. Molar-Incisor-Hypomineralisation (MIH). A retrospective clinical study in Greek children. II. Possible medical aetiological factors. Eur Arch Paediatr Dent 9, 207–217 (2008). https://doi.org/10.1007/BF03262637

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03262637

Key words

Navigation