Skip to main content
Log in

Early Detection of Breast Cancer

New Biomarker Tests on the Horizon?

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

When cancer is detected early, patients live longer, require less extensive treatment, and in general fare better than patients with more advanced disease. Breast cancer is the most commonly diagnosed cancer among women. Breast cancer screening through mammography has shown significant mortality reduction in clinical trials through the early detection of disease. This article aims to outline novel methods of indirect and direct detection of breast cancer through biomarkers. Proteomics and gene expression profiling methods will likely be important tools in regard to cancer detection in the future. Blood-based biomarker development is the furthest along and, either in the form of proteins or RNA, shows promise to lead to early detection techniques. Unfortunately, procedures aiming to analyze the breast tissue more directly have not had the desired outcomes thus far for the early detection of breast cancer. Appropriate development of these potential early detection and diagnostic tests is necessary prior to their clinical application, with special attention to their specificity to avoid overdiagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etzioni R, Urban N, Ramsey M, et al. The case for early detection. Nat Rev Cancer 2003; 3: 243–52

    Article  PubMed  CAS  Google Scholar 

  2. Surveillance Epidemiology and End Results Program, US National Cancer Institute [online]. Available from URL: http://seer.cancer.gov [Accessed 2009 Aug 26]

  3. Levenson VV. Biomarkers for early detection of breast cancer: what, when and where? Biochim Biophys Acta 2007; 1770: 847–56

    Article  PubMed  CAS  Google Scholar 

  4. Jemal A, Siegal R, Ward E, et al. Cancer statistics 2008. CA Cancer J Clin 2008; 58: 71–96

    Article  PubMed  Google Scholar 

  5. Khatcheressian JL, Wolff AC, Smith TJ, et al. American Society of Clinical Oncology 2006 update of the breast cancer follow up and management guidelines in the adjuvant setting. J Clin Oncol 2006; 31: 591–7

    Google Scholar 

  6. Winer E, Gralow JR, Diller L, et al. Clinical care advances 2008: major research advances in cancer treatment, prevention and screening: a report from the American Society of Clinical Oncology. J Clin Oncol 2009; 27: 812–26

    Article  PubMed  Google Scholar 

  7. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumors. Nature 2000; 406: 747–52

    Article  PubMed  CAS  Google Scholar 

  8. Gøtzsche PC, Nielsen M. Screening for breast cancer with mammography. Cochrane Database Syst Rev 2006; (4): CD001877

  9. Humphrey LL, Helfand M, Chan B, et al. Breast cancer screening: a summary of the evidence for the US Preventative Services Task Force. Ann Intern Med 2002; 137: E347–67

    Google Scholar 

  10. Wright T, McGechan A. Breast cancer: new technologies for risk assessment and diagnosis. Mol Diagn 2003; 7: 49–55

    Article  PubMed  Google Scholar 

  11. Gralow JR, Ozols RF, Bajorin DF, et al. Clinical care advances 2007: major research advances in cancer treatment, prevention and screening. A report from the American Society of Clinical Oncology. J Clin Oncol 2008; 26: 313–25

    Article  PubMed  Google Scholar 

  12. Granader EJ, Dwamena B, Carlos RC. MRI and mammography surveillance of women at increased risk for breast cancer: recommendations using an evidence-based approach. Acad Radiol 2008; 15: 1590–5

    Article  PubMed  Google Scholar 

  13. Breast Cancer Risk Assessment Tool, US National Cancer Institute [online]. Available from URL: http://www.cancer.gov/bcrisktool/ [Accessed 2009 Aug 26]

  14. Early Detection Research Network, US National Cancer Institute [online]. Available from URL: http://edrn.nci.nih.gov/ [Accessed 2009 Aug 7]

  15. Somiari RI, Somiari S, Russell S, et al. Proteomics of breast carcinoma. J Chromatogr 2005; 815: 215–25

    Article  CAS  Google Scholar 

  16. Kelly-Spratt KS, Kasarda AE, Igra M, et al. A mouse model for biomarker discovery. J Proteome Res 2008; 7: 3613–8

    Article  PubMed  CAS  Google Scholar 

  17. Debies MT, Gestl SA, Mathers JL, et al. Tumor escape in a Wnt1-dependent mouse breast cancer model is enabled by p19Arf/p53 pathway lesions but not p16lnk4a loss. J Clin Invest 2008; 118: 51–63

    Article  PubMed  CAS  Google Scholar 

  18. Whiteaker JR, Zhang H, Zhao L, et al. Integrated pipeline for mass spectometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer. J Proteome Res 2007; 6: 3962–75

    Article  PubMed  CAS  Google Scholar 

  19. Pitteri SJ, Faca VM, Kelly-Spratt KS, et al. Plasma proteome profiling of a mouse model of breast cancer identifies a set of up-regulated proteins in common with human breast cancer cells. J Proteome Res 2008; 7: 1481–9

    Article  PubMed  CAS  Google Scholar 

  20. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1: 845–67

    Article  PubMed  CAS  Google Scholar 

  21. Paulovich AG, Whiteaker JR, Hoofnagle AN, et al. The interface between biomarker discovery and clinical validation: the tar pit of the protein biomarker pipeline. Proteomics Clin Appl 2008; 2(10-11): 1386–402

    Article  PubMed  CAS  Google Scholar 

  22. Ou K, Yu K, Kesuma D, et al. Novel breast cancer biomarkers identified by integrative proteomic and gene expression mapping. J Proteome Res 2008; 7: 1518–28

    Article  PubMed  CAS  Google Scholar 

  23. Vishwanatha JK, Kumble S. Involvement of annexin II in DNA replication: evidence from cell free extracts of Xenopus eggs. J Cell Sci 1993; 105 (Pt 2): 533–40

    PubMed  CAS  Google Scholar 

  24. Moyano JV, Evans JR, Chen F, et al. Alpha-B crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 2006 Jan; 116(1): 261–70

    Article  PubMed  CAS  Google Scholar 

  25. Gruvberger-Saal SK, Parsons R. Is the small heat shock protein alphaB crystallin an oncogene? J Clin Invest 2006 Jan; 116(1): 30–2

    Article  PubMed  CAS  Google Scholar 

  26. Feuer EJ, Etzioni R, Cronin KA, et al. The use of modeling to understand the impact of screening on US mortality: examples from mammography to PSA testing. Stat Methods Med Res 2004; 13: 421–42

    Article  PubMed  Google Scholar 

  27. DePotter CR, Beghin C, Praet MM, et al. CEA and HMFG in hyperplastic and malignant lesions of the breast. Pathol Res Pract 1988; 183: 271–6

    Article  CAS  Google Scholar 

  28. Taylor-Papadimitriou J, Burchell JM, Plunkett T, et al. MUC1 and the immunobiology of cancer. J Mammary Gland Biol Neoplasia 2002; 7: 209–21

    Article  PubMed  Google Scholar 

  29. Hounsell EF, Young M, Davies MJ. Glycoprotein changes in tumours: a renaissance in clinical applications. Clin Sci (Lond) 1997; 93(4): 287–93

    CAS  Google Scholar 

  30. Reddish MA, Suresh MR, Koganty RR, et al. Analysis of the role of type 1 core O-glycans in the binding of anti-MUC1 antibodies by cytofluorometry and synthetic peptide/glycopeptide binding inhibition studies. Tumour Biol 1998; 19Suppl. 1: 57–66

    Article  PubMed  CAS  Google Scholar 

  31. Hayes DF. Serum (circulating) tumor markers for breast cancer. Recent Results Cancer Res 1996; 140: 101–13

    Article  PubMed  CAS  Google Scholar 

  32. Ferreira CSM, Papamichael K, Guilbault G, et al. DNA aptamers against the MUC1 tumour marker: design of aptamer-antibody sandwich ELISA for the early diagnosis of epithelial tumors. Anal Bioanal Chem 2008; 390: 1039–50

    Article  PubMed  CAS  Google Scholar 

  33. Gail MH. Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk. J Natl Cancer Inst 2008; 100: 1037–41

    Article  PubMed  CAS  Google Scholar 

  34. Thomas G, Jacobs KB, Kraft P, et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 2009; 41(5): 579–84

    Article  PubMed  CAS  Google Scholar 

  35. Ahmed S, Thomas G, Ghoussaini M, et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 2009; 41(5): 585–90

    Article  PubMed  CAS  Google Scholar 

  36. Gaikwad NW, Yang L, Muti P, et al. The molecular etiology of breast cancer: evidence from biomarkers of risk. Int J Cancer 2008; 122: 1949–57

    Article  PubMed  CAS  Google Scholar 

  37. Disis ML, Pupa SM, Gralow JR, et al. High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 1997; 15: 3363–7

    PubMed  CAS  Google Scholar 

  38. Lu H, Goodell V, Disis ML. Humoral immunity directed against tumor-associated antigens as potential biomarkers for the early diagnosis of cancer. J Proteome Res 2008; 7: 1388–94

    Article  PubMed  CAS  Google Scholar 

  39. Anderson KS, Ramachandran N, Wong J, et al. Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer. J Proteome Res 2008 Apr; 7(4): 1490–9

    Article  PubMed  CAS  Google Scholar 

  40. Regele S, Hohlberger P, Vogl FD, et al. Serum p53 autoantibodies in patients with minimal lesions of ductal carcinoma in situ of the breast. Br J Cancer 1999; 81: 702–4

    Article  PubMed  CAS  Google Scholar 

  41. Goodell V, Waisman J, Salazar LG, et al. Level of HER-2/neu protein expression in breast cancer may affect the development of endogenous HER-2/neu-specific immunity. Mol Cancer Ther 2008; 7: 449–54

    Article  PubMed  CAS  Google Scholar 

  42. Raina D, Ahmad R, Joshi MD, et al. Direct targeting of the mucin 1 onco-protein blocks survival and tumorigenicity of human breast carcinoma cells. Cancer Res 2009 Jun 15; 69(12): 5133–41

    Article  PubMed  CAS  Google Scholar 

  43. Leroy X, Buisine MP, Leteurtre E, et al. MUC1 (EMA): a key molecule of carcinogenesis? Ann Pathol 2006 Sep; 26(4): 257–66

    Article  PubMed  Google Scholar 

  44. Hermsen BB, Verheijen RH, Menko FH, et al. Humoral immune responses to MUC1 in women with a BRCA1 or BRCA2 mutation. Eur J Cancer 2007; 43: 1556–63

    Article  PubMed  CAS  Google Scholar 

  45. Fabian CJ, Kimler BF, Mayo MS, et al. Breast-tissue sampling for risk assessment and prevention. Endocr Relat Cancer 2005; 12: 185–213

    Article  PubMed  CAS  Google Scholar 

  46. Gong G, DeVries S, Chew KL, et al. Genetic changes in paired atypical and usual ductal hyperplasia of the breast by comparative genomic hybridization. Clin Cancer Res 2001; 7: 2410–14

    PubMed  CAS  Google Scholar 

  47. Sartorius OV, Smith HS, Morris P, et al. Cytologic evaluation of breast fluid in the detection of breast disease. J Natl Cancer Inst 1977; 59: 1073–80

    PubMed  CAS  Google Scholar 

  48. Wrensch MR, Petrackis NL, King EB, et al. Breast cancer incidence in women with abnormal cytology in nipple aspirates of breast fluid. Am J Epidemiol 1992; 135: 130–41

    PubMed  CAS  Google Scholar 

  49. Wrensch MR, Petrakis NL, Miike R, et al. Breast cancer risk in women with abnormal cytology in nipple aspirates of breast fluid. J Natl Cancer Inst 2001; 93: 1791–8

    Article  PubMed  CAS  Google Scholar 

  50. Suijkerbuijk KPM, Van Der Wall E, Vooijs M, et al. Molecular analysis of nipple fluid for breast cancer screening. Pathobiology 2008; 75: 146–52

    Article  Google Scholar 

  51. Tice JA, Miike R, Adduci K, et al. Nipple aspirate fluid cytology and the Gail model for breast cancer risk assessment in a screening population. Cancer Epidemiol Biomarkers Prev 2005; 14: 324–8

    Article  PubMed  Google Scholar 

  52. Baltzell KA, Moghadassi M, Rice T, et al. Epithelial cells in nipple aspirate fluid and subsequent breast cancer risk: a historic prospective study. BMC Cancer 2008; 8: 75–81

    Article  PubMed  Google Scholar 

  53. Buehring G, Letscher A, McGirr K, et al. Presence of epithelial cells in nipple aspirate fluid is associated with subsequent breast cancer: a 25-year prospective study. Breast Cancer Res Treat 2006; 98: 63–70

    Article  PubMed  Google Scholar 

  54. Tondre J, Nejad M, Casano A, et al. Technical enhancements to breast ductal lavage. Ann Surg Oncol 2008; 15: 2734–8

    Article  PubMed  Google Scholar 

  55. Visvanathan K, Santor D, Ali SZ, et al. The reliability of nipple aspirate and ductal lavage in women at increased risk for breast cancer: a potential tool for breast cancer risk assessment and biomarker evaluation. Cancer Epidemiol Biomarkers Prev 2007; 16: 950–5

    Article  PubMed  CAS  Google Scholar 

  56. Lithgow D, Nyamathi A, Elashoff D, et al. C-reactive fluid in nipple aspirate fluid associated with Gail model factors. Biol Res Nurs 2007; 9: 108–16

    Article  PubMed  CAS  Google Scholar 

  57. Arun B, Valero V, Logan C, et al. Comparison of ductal lavage and random periareolar fine needle aspiration as tissue acquisition methods in early breast cancer prevention trials. Clin Cancer Res 2007; 13: 4943–8

    Article  PubMed  Google Scholar 

  58. Cazzaniga M, Gheit T, Casadio C, et al. Analysis of the presence of cutaneous and mucosal papillomavirus types in ductal lavage fluid, milk and colostrum to evaluate its role in breast carcinogenesis. Breast Cancer Res Treat 2009; 114: 599–605

    Article  PubMed  Google Scholar 

  59. Amarante MK, Watanabe MA, et al. The possible involvement of virus in breast cancer. J Cancer Res Clin Oncol 2009; 135(3): 329–37

    Article  PubMed  Google Scholar 

  60. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008; 105: 10513–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr Gralow has received institutional research support from Roche, Novartis, Amgen, Bristol Myers Squibb, Eli Lilly and Company, Abraxis BioScience Inc., and Sanofi-aventis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna C. Jotwani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jotwani, A.C., Gralow, J.R. Early Detection of Breast Cancer. Mol Diag Ther 13, 349–357 (2009). https://doi.org/10.1007/BF03256340

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256340

Keywords

Navigation