Skip to main content

Molecular Diagnostics in Breast Cancer

  • Chapter
  • First Online:
Molecular Diagnostics in Cancer Patients

Abstract

Diagnosis and treatment of breast cancer, the most prevalent cancer among women, has come a long way, transitioning from clinical and pathological approaches into the new omics era. With available standard and traditional breast cancer screening and diagnostic methods are associated with own set of limitations, the need to develop new biomarkers or molecular diagnostics becomes more pertinent. Currently available biomarkers and diagnostics tools have enabled breast cancer diagnosis undergo a paradigm shift. These have been successful not only because of their prognostic and predictive value but also because it has enabled simplified and early breast cancer detection, along with accurate and tailored treatment. The present chapter focuses on how current molecular tools and technologies have revolutionized existing traditional screening and diagnosis methods for breast cancer. Additionally, the growing significance of using newer ‘omics’ approaches, such as proteomics in biomarker discovery for breast cancer holds tremendous promise and has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Connor CM, Adams JU. Essentials of cell biology. 2010. https://www.nature.com/scitable/ebooks/essentials-of-cell-biology-14749010/122997842. Accessed 2 Jan 2018.

  2. World Health Organization. Cancer Factsheet. 2018. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 2 Jan 2018.

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    PubMed  Google Scholar 

  4. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    PubMed  Google Scholar 

  5. McPherson K, Steel C, Dixon JM. Breast cancer—epidemiology, risk factors, and genetics. BMJ. 2000;321(7261):624–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. World Health Organization-International Agency for Research on Cancer. GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. 2012. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. Accessed 2 Jan 2018.

  7. World Health Organization. Breast cancer. n.d. http://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/. Accessed 2 Jan 2018.

  8. World Health Organization. Breast cancer: prevention and control. n.d. http://www.who.int/cancer/detection/breastcancer/en/. Accessed 2 Jan 2018.

  9. Cancer Atlas. n.d. http://canceratlas.cancer.org/the-burden/cancer-in-southern-eastern-and-southeastern-asia/. Accessed 2 Jan 2018.

  10. Malvia S, Bagadi SA, Dubey US, Saxena S. Epidemiology of breast cancer in Indian women. Asia Pac J Clin Oncol. 2017;13(4):289–95.

    PubMed  Google Scholar 

  11. World Health Organization. Guide to cancer early diagnosis. 2017. http://apps.who.int/iris/bitstream/10665/254500/1/9789241511940-eng.pdf?ua=1. Accessed 2 Jan 2018.

  12. Unger-Saldaña K. Challenges to the early diagnosis and treatment of breast cancer in developing countries. World J Clin Oncol. 2014;5(3):465–77.

    PubMed  PubMed Central  Google Scholar 

  13. da Costa Vieira RA, Biller G, Uemura G, Ruiz CA, Curado MP. Breast cancer screening in developing countries. Clinics. 2017;72(4):244–53.

    PubMed  PubMed Central  Google Scholar 

  14. Amoran OE, Toyobo OO. Predictors of breast self-examination as cancer prevention practice among women of reproductive age-group in a rural town in Nigeria. Niger Med J. 2015;56(3):185–9.

    PubMed  PubMed Central  Google Scholar 

  15. Hossain MS, Ferdous S, Karim-Kos HE. Breast cancer in South Asia: a Bangladeshi perspective. Cancer Epidemiol. 2014;38(5):465–70.

    PubMed  Google Scholar 

  16. Madhu B, Shankar P. Awareness and screening behaviors of breast cancer among urban women in Mysuru, India-need for breast health education program. Int J Commun Med Publ Health. 2017;4(8):2967–72.

    Google Scholar 

  17. Arslan AA, Formenti SC. Mammography in developing countries: the risks associated with globalizing the experiences of the Western world. Nat Rev Clin Oncol. 2009;6(3):136–7.

    Google Scholar 

  18. Breast Cancer in Developing Countries. Lancet. 2009;374(9701):1567–2131.

    Google Scholar 

  19. Rizwan MM, Saadullah M. Lack of awareness about breast cancer and its screening in developing countries. Indian J Cancer. 2009;46(3):252–3.

    CAS  PubMed  Google Scholar 

  20. Shtern F. Digital mammography and related technologies: a perspective from the National Cancer Institute. Radiology. 1992;183(3):629–30.

    CAS  PubMed  Google Scholar 

  21. Drukteinis JS, Mooney BP, Flowers CI, Gatenby RA. Beyond mammography: new frontiers in breast cancer screening. Am J Med. 2013;126(6):472–9.

    PubMed  PubMed Central  Google Scholar 

  22. Carney PA, Miglioretti DL, Yankaskas BC, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med. 2003;138(3):168–75.

    PubMed  Google Scholar 

  23. Vercher-Conejero JL, Pelegrí-Martinez L, Lopez-Aznar D, Cózar-Santiago MD. Positron emission tomography in breast cancer. Diagnostics. 2015;5(1):61–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tatsumi M, Cohade C, Mourtzikos KA, Fishman EK, Wahl RL. Initial experience with FDG-PET/CT in the evaluation of breast cancer. Eur J Nucl Med Mol Imaging. 2006;33(3):254–62.

    PubMed  Google Scholar 

  25. Evangelista L, Rita Cervino A. Nuclear imaging and early breast cancer detection. Curr Radiopharm. 2014;7(1):29–35.

    CAS  PubMed  Google Scholar 

  26. Simanek M, Koranda P. SPECT/CT imaging in breast cancer-current status and challenges. Biomed Papers. 2016;160(4):474–83.

    Google Scholar 

  27. Sun Y, Wei W, Yang HW, Liu JL. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2013;40(3):450–63.

    PubMed  Google Scholar 

  28. Rechtman LR, Lenihan MJ, Lieberman JH, Teal CB, Torrente J, Rapelyea JA, Brem RF. Breast-specific gamma imaging for the detection of breast cancer in dense versus nondense breasts. Am J Roentgenol. 2014;202(2):293–8.

    Google Scholar 

  29. Skaane P. Breast cancer screening with digital breast tomosynthesis. Breast Cancer. 2017;24(1):32–41.

    PubMed  Google Scholar 

  30. Schwab M, editor. Encyclopedia of cancer. Berlin: Springer Science & Business Media; 2008.

    Google Scholar 

  31. De Abreu FB, Wells WA, Tsongalis GJ. The emerging role of the molecular diagnostics laboratory in breast cancer personalized medicine. Am J Pathol. 2013;183(4):1075–83.

    PubMed  Google Scholar 

  32. Hagemann IS. Molecular testing in breast cancer: a guide to current practices. Arch Pathol Lab Med. 2016;140(8):815–24.

    CAS  PubMed  Google Scholar 

  33. Zoon CK, Starker EQ, Wilson AM, Emmert-Buck MR, Libutti SK, Tangrea MA. Current molecular diagnostics of breast cancer and the potential incorporation of microRNA. Expert Rev Mol Diagn. 2009;9(5):455–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. von Wahlde MK, Kurita T, Sanft T, Hofstatter E, Pusztai L. Clinical utility of emerging molecular diagnostics in breast cancer. Am J Hematol Oncol. 2016;12(2). http://www.gotoper.com/publications/ajho/2016/2016Feb/Clinical-Utility-of-Emerging-Molecular-Diagnostics-in-Breast-Cancer. Accessed 21 Jan 2018.

  35. Duffy MJ, Harbeck N, Nap M, Molina R, Nicolini A, Senkus E, Cardoso F. Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer. 2017;75:284–98.

    CAS  PubMed  Google Scholar 

  36. Meng S, Tripathy D, Shete S, Ashfaq R, Haley B, Perkins S, Beitsch P, Khan A, Euhus D, Osborne C, Frenkel E. HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci U S A. 2004;101(25):9393–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yardley DA, Kaufman PA, Huang W, Krekow L, Savin M, Lawler WE, Zrada S, Starr A, Einhorn H, Schwartzberg LS, Adams JW. Quantitative measurement of HER2 expression in breast cancers: comparison with ‘real-world’ routine HER2 testing in a multicenter Collaborative Biomarker Study and correlation with overall survival. Breast Cancer Res. 2015;17(1):41. https://doi.org/10.1186/s13058-015-0543-x.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Soliman NA, Yussif SM. Ki-67 as a prognostic marker according to breast cancer molecular subtype. Cancer Biol Med. 2016;13(4):496–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA. Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol. 2010;11(2):174–83.

    CAS  PubMed  Google Scholar 

  40. Cronin M, Sangli C, Liu ML. Analytical validation of the Oncotype DX genomic diagnostic test for recurrence prognosis and therapeutic response prediction in node-negative, estrogen receptor-positive breast cancer. Clin Chem. 2007;53(6):1084–91.

    CAS  PubMed  Google Scholar 

  41. Peethambaram PP, Hoskin TL, Day CN, Goetz MP, Habermann EB, Boughey JC. Use of 21-gene recurrence score assay to individualize adjuvant chemotherapy recommendations in ER+/HER2− node positive breast cancer—A National Cancer Database study. NPJ Breast Cancer. 2017;3(1):41. https://doi.org/10.1038/s41523-017-0044-4.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma XJ, Wang Z, Ryan PD, et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004;5(6):607–16.

    CAS  PubMed  Google Scholar 

  43. Jansen MP, Sieuwerts AM, Look MP, et al. HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. J Clin Oncol. 2007;25(6):662–8.

    CAS  PubMed  Google Scholar 

  44. Ma XJ, Salunga R, Dahiya S, et al. A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res. 2008;14(9):2601–8.

    CAS  PubMed  Google Scholar 

  45. Hequet D, Callens C, Gentien D, Albaud B, Mouret-Reynier MA, Dubot C, Cottu P, Huchon C, Zilberman S, Berseneff H, Foa C. Prospective, multicenter French study evaluating the clinical impact of the Breast Cancer Intrinsic Subtype-Prosigna® Test in the management of early-stage breast cancers. PLoS One. 2017;12(10):e0185753. https://doi.org/10.1371/journal.pone.0185753.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lænkholm AV, Jensen MB, Eriksen JO, Rasmussen BB, Knoop AS, Buckingham W, Ferree S, Schaper C, Nielsen TO, Haffner T, Kibøl T. PAM50 risk of recurrence score predicts 10-year distant recurrence in a comprehensive Danish cohort of postmenopausal women allocated to 5 years of endocrine therapy for hormone receptor–positive early breast cancer. J Clin Oncol. 2018; https://doi.org/10.1200/JCO.2017.74.6586.

  47. Buus R, Sestak I, Kronenwett R, Denkert C, Dubsky P, Krappmann K, Scheer M, Petry C, Cuzick J, Dowsett M. Comparison of EndoPredict and EPclin with oncotype DX recurrence score for prediction of risk of distant recurrence after endocrine therapy. J Natl Cancer Inst. 2016;108(11) https://doi.org/10.1093/jnci/djw149.

  48. Duffy MJ, McGowan PM, Harbeck N, Thomssen C, Schmitt M. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res. 2014;16(4):428. https://doi.org/10.1186/s13058-014-0428-4.

    PubMed  PubMed Central  Google Scholar 

  49. Desmedt C, Voet T, Sotiriou C, Campbell PJ. Next generation sequencing in breast cancer: First take home messages. Curr Opin Oncol. 2012;24(6):597. https://doi.org/10.1097/CCO.0b013e328359554e.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nassar FJ, Nasr R, Talhouk R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther. 2015;172:34–49.

    Google Scholar 

  51. Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5(10):1122. https://doi.org/10.7150/thno.11543.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Saadeh Y, Leung T, Vyas A, Chaturvedi LS, Perumal O, Vyas D. Applications of nanomedicine in breast cancer detection, imaging, and therapy. J Nanosci Nanotechnol. 2014;14(1):913–23.

    CAS  PubMed  Google Scholar 

  53. Sharma A, Jain N, Sareen R. Nanocarriers for diagnosis and targeting of breast cancer. Biomed Res Int. 2013;2013:960821. https://doi.org/10.1155/2013/960821.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Singh AK, Pandey A, Tewari M, Kumar R, Sharma A, Pandey HP, Shukla HS. Prospects of nano–material in breast cancer management. Pathol Oncol Res. 2013;19(2):155–65.

    CAS  PubMed  Google Scholar 

  55. Baskin Y, Yigitbasi T. Clinical proteomics of breast cancer. Curr Genomics. 2012;11(7):528–36.

    Google Scholar 

  56. Bertucci F, Birnbaum D, Goncalves A. Proteomics of breast cancer principles and potential clinical applications. Mol Cell Proteomics. 2006;5(10):1772–86.

    CAS  PubMed  Google Scholar 

  57. Gast MC, Schellens JH, Beijnen JH. Clinical proteomics in breast cancer: a review. Breast Cancer Res Treat. 2009;116(1):17–29.

    CAS  PubMed  Google Scholar 

  58. Qin XJ, Ling BX. Proteomic studies in breast cancer. Oncol Lett. 2012;3(4):735–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hudler P, Kocevar N, Komel R. Proteomic approaches in biomarker discovery: new perspectives in cancer diagnostics. Sci World J. 2014;2014 https://doi.org/10.1155/2014/260348.

  60. Wang DL, Xiao C, Fu G, Wang X, Li L. Identification of potential serum biomarkers for breast cancer using a functional proteomics technology. Biomark Res. 2017;5(1):11. https://doi.org/10.1186/s40364-017-0092-9.

    PubMed  PubMed Central  Google Scholar 

  61. Lourenco AP, Benson KL, Henderson MC, Silver M, Letsios E, Tran Q, Gordon KJ, Borman S, Corn C, Mulpuri R, Smith W. A noninvasive blood-based combinatorial proteomic biomarker assay to detect breast cancer in women under the age of 50 years. Clin Breast Cancer. 2017;17(7):516–25.

    CAS  PubMed  Google Scholar 

  62. Porto-Mascarenhas EC, Assad DX, Chardin H, Gozal D, Canto GD, Acevedo AC, Guerra EN. Salivary biomarkers in the diagnosis of breast cancer: a review. Crit Rev Oncol Hematol. 2017;110:62–73.

    PubMed  Google Scholar 

  63. Shaheed SU, Tait C, Kyriacou K, Linforth R, Salhab M, Sutton C. Evaluation of nipple aspirate fluid as a diagnostic tool for early detection of breast cancer. Clin Proteomics. 2018;15(1):3. https://doi.org/10.1186/s12014-017-9179-4.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Beretov J, Wasinger VC, Millar EK, Schwartz P, Graham PH, Li Y. Proteomic analysis of urine to identify breast cancer biomarker candidates using a label-free LC-MS/MS approach. PLoS One. 2015;10(11):e0141876. https://doi.org/10.1371/journal.pone.0141876.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lebrecht A, Boehm D, Schmidt M, Koelbl H, Schwirz RL, Grus FH. Diagnosis of breast cancer by tear proteomic pattern. Cancer Genomics Proteomics. 2009;6(3):177–82.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghamitra Pati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha, R., Pati, S. (2019). Molecular Diagnostics in Breast Cancer. In: Shukla, K., Sharma, P., Misra, S. (eds) Molecular Diagnostics in Cancer Patients. Springer, Singapore. https://doi.org/10.1007/978-981-13-5877-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5877-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5876-0

  • Online ISBN: 978-981-13-5877-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics