Skip to main content
Log in

A Support Vector Machine Approach to Assess Drug Efficacy of Interferon-α and Ribavirin Combination Therapy

  • Short Communication
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background: Interferon-α (IFNα) in combination with ribavirin can be used for the treatment of patients with chronic hepatitis C. This therapeutic approach achieves an overall sustained response rate of approximately 40%, but treatment takes 6–12 months and patients often experience significant adverse reactions.

Objective: We aim to develop a tool to distinguish potential responders from nonresponders prior to initiation of IFNα-ribavirin treatment.

Methods: Using single nucleotide polymorphisms (SNPs) and viral genotype, we applied the support vector machine (SVM) algorithm to build a tool to predict responsiveness to IFNα-ribavirin combination therapy. Furthermore, we utilized the SVM algorithm with the recursive feature elimination method to identify a subset of factors that are significantly more influential than the others.

Results and conclusion: The SVM model is a promising method for inferring responsiveness to IFNα dealing with the complex nonlinear relationship between factors (such as SNPs and viral genotype) and successful therapy. In this study, we demonstrate that our tool may allow patients and doctors to make more informed decisions by analyzing host SNP and viral genotype information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III

References

  1. Alberti A, Benvegnu L. Management of hepatitis C. J Hepatol 2003; 38Suppl. 1: S104–18

    Article  PubMed  Google Scholar 

  2. Brok J, Gluud LL, Gluud C. Effects of adding ribavirin to interferon to treat chronic hepatitis C infection: a systematic review and meta-analysis of randomized trials. Arch Intern Med 2005; 165(19): 2206–12

    Article  PubMed  CAS  Google Scholar 

  3. Yee LJ, Tang J, Gibson AW, et al. Interleukin 10 polymorphisms as predictors of sustained response in antiviral therapy for chronic hepatitis C infection. Hepatology 2001; 33(3): 708–12

    Article  PubMed  CAS  Google Scholar 

  4. Hijikata M, Ohta Y, Mishiro S. Identification of a single nucleotide polymorphism in the MxA gene promoter (G/T at nt-88) correlated with the response of hepatitis C patients to interferon. Intervirology 2000; 43(2): 124–7

    Article  PubMed  CAS  Google Scholar 

  5. Sugimoto Y, Kuzushita N, Takehara T, et al. A single nucleotide polymorphism of the low molecular mass polypeptide 7 gene influences the interferon response in patients with chronic hepatitis C. J Viral Hepat 2002; 9(5): 377–84

    Article  PubMed  CAS  Google Scholar 

  6. Hwang Y, Chen EY, Gu ZJ, et al. Genetic predisposition of responsiveness to therapy for chronic hepatitis C. Pharmacogenomics 2006; 7(5): 697–709

    Article  PubMed  CAS  Google Scholar 

  7. Lin E, Hwang Y, Wang SC, et al. An artificial neural network approach to the drug efficacy of interferon treatments. Pharmacogenomics 2006; 7(7): 1017–24

    Article  PubMed  CAS  Google Scholar 

  8. Vapnik V. The nature of statistical learning theory. New York: Springer-Verlag, 1995

    Google Scholar 

  9. Burges CJC. A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 1998; 2: 127–67

    Article  Google Scholar 

  10. Listgarten J, Damaraju S, Poulin B, et al. Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clin Cancer Res 2004; 10(8): 2725–37

    Article  PubMed  CAS  Google Scholar 

  11. Schwender H, Zucknick M, Ickstadt K, et al. A pilot study on the application of statistical classification procedures to molecular epidemiological data. Toxicol Lett 2004; 151(1): 291–9

    Article  PubMed  CAS  Google Scholar 

  12. Beerenwinkel N, Daumer M, Oette M, et al. Geno2pheno: estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res 2003; 31(13): 3850–5

    Article  PubMed  CAS  Google Scholar 

  13. Yap CW, Cai CZ, Xue Y, et al. Prediction of torsade-causing potential of drugs by support vector machine approach. Toxicol Sci 2004; 79(1): 170–7

    Article  PubMed  CAS  Google Scholar 

  14. Kriegl JM, Arnhold T, Beck B, et al. A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J Comput Aided Mol Des. 2005; 19(3): 189–201

    Article  PubMed  CAS  Google Scholar 

  15. Lin E, Huang LC. Identification of significant genes in genomics using Bayesian variable selection methods. Comput Biol Chem Adv Appl 2008; 1: 13–8

    CAS  Google Scholar 

  16. Lin E, Hwang Y, Tzeng CM. A case study of the utility of the HapMap database for pharmacogenomic haplotype analysis in the Taiwanese population. Mol Diagn Ther 2006; 10(6): 367–70

    Article  PubMed  CAS  Google Scholar 

  17. Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Mach Learn 2002; 46(1-3): 389–422

    Article  Google Scholar 

  18. Bishop CM. Neural networks for pattern recognition. Oxford: Clarendon Press, 1995

    Google Scholar 

  19. Doran M, Raicu DS, Furst JD, et al. Oligonucleotide microarray identification of Bacillus anthracis strains using support vector machines. Bioinformatics 2007; 23(4): 487–92

    Article  PubMed  CAS  Google Scholar 

  20. Brok J, Gluud LL, Gluud C. Ribavirin monotherapy for chronic hepatitis C infection: a Cochrane Hepato-Biliary Group systematic review and meta-analysis of randomized trials. Am J Gastroenterol 2006; 101(4): 842–7

    Article  PubMed  CAS  Google Scholar 

  21. Liu Q, Yang J, Chen Z, et al. Supervised learning-based tagSNP selection for genome-wide disease classifications. BMC Genomics 2008; 9Suppl. 1: S6

    Article  PubMed  Google Scholar 

  22. Lin E, Hwang Y, Liang KH, et al. Pattern-recognition techniques with haplotype analysis in pharmacogenomics. Pharmacogenomics 2007; 8(1): 75–83

    Article  PubMed  CAS  Google Scholar 

  23. Lin E, Hwang Y, Chen EY. Gene-gene and gene-environment interactions in interferon therapy for chronic hepatitis C. Pharmacogenomics 2007; 8(10): 1327–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their sincere thanks to Vita Genomics, Inc. for funding this research and to Dr Pei-Jer Chen of the Hepatitis Research Center, National Taiwan University, Dr You-Chen Chao of the Tri-Service General Hospital, Dr Ming-Lung Yu of the Kaohsiung Medical University Hospital, and Dr Chuan-Mo Lee of the Kaohsiung Chang-Gung Memorial Hospital for research collaboration.

The authors would also like to thank Dr David Schlessinger for helpful suggestions and the anonymous reviewers for their constructive comments, which improved the context and presentation of this paper.

The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, E., Hwang, Y. A Support Vector Machine Approach to Assess Drug Efficacy of Interferon-α and Ribavirin Combination Therapy. Mol Diag Ther 12, 219–223 (2008). https://doi.org/10.1007/BF03256287

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256287

Keywords

Navigation