Skip to main content
Log in

Pressure-infiltration processing of reinforced aluminum

  • Discontinuously Reinforced Aluminum
  • Tutorial
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Pressure infiltration of liquid metal is one of the most important processing routes for the production of aluminum-matrix composites having a self-supporting reinforcement phase. This article briefly examines the physical phenomena governing infiltration processes, to present practical guidelines derived from their analysis for optimization of the process and the materials produced. Engineering aspects that are pertinent to infiltration techniques, including preform preparation, process configurations, flow control, and innovative processes, are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.J. Michaud, Fundamentals of Metal Matrix Composites, ed. S. Suresh, A. Mortensen, and A. Needleman (Stoneham, MA: Butterworth-Heinemann, 1992).

    Google Scholar 

  2. R. Elliott, Eutectic Solidification Proassing: Crystalline and Glassy Alloys, (London: Butterworths, 1983), chapter 7.

    Google Scholar 

  3. A.W. Urquhart, “Novel Reinforced Ceramics and Metals: A Review of Lanxide’s Composite Technologies,” Mater. Sci. & Eng., A144 (1991), pp. 75–82.

    CAS  Google Scholar 

  4. A. Mortensen and I. Jin, “Solidification Processing of Metal Matrix Composites,” Int. Mater. Rev., 37 (1992), pp. 101–128.

    CAS  Google Scholar 

  5. T. Donomoto et al., “Ceramic Fiber Reinforced Piston for High Performance Diesel Engines,” SAE Technical Paper Series (Warrendale, PA: SAE, 1983).

    Book  Google Scholar 

  6. M. Ebisawa et al., “Production Process of Metal Matrix Composite (MMC) Engine Block,” SAE Technical Paper Series (Warrendale, PA: SAE, 25 February 1991).

    Book  Google Scholar 

  7. M.K. Premkumar, W.H. Hunt, and R.R. Sawtell, “Aluminum Composite Materials for Multichip Modules,” JOM, 44(7) (1992), pp. 24–28.

    Article  CAS  Google Scholar 

  8. F.V. Lenel, Powder Metallurgy, (Princeton, NJ: MPIF, 1980), pp. 588.

    Google Scholar 

  9. K.A. Semlak and F.N. Rhines, “The Rate of Infiltration of Metals,” Trans. Met. Soc. AIME, 212 (1998), pp. 325–331.

    Google Scholar 

  10. A.J. Shaler, “Theoretical ASpects of the Infiltration of Powder Metallurgy Products,” Int. J. Powder Metall., 1 (1965), pp. 3–14.

    Google Scholar 

  11. H. Fukunaga and M. Kuriyama, “Experimental Srudy on the Fabrication of Fiber Reinforced Aluminium by Squeeze Casting,” Bull. Jpn. Soc. Mech. Engrs., 25 (1982), pp. 842–847.

    CAS  Google Scholar 

  12. H. Fukunaga and T. Ohde, “Squeeze Casting of Silicon Carbide Fiber Reinforced Aluminum,” Fourth International Conference on Composite Materials, ICCM-IV, ed. T. Hayashi, K. Kawata, and S. Umakawa (Tokyo: Jpn. Soc. Compo Mater., 1982), pp. 1443–1450.

    Google Scholar 

  13. H. Fukunaga, S. Komatsu, and Y. Kanoh, “The Production-Scale Squeeze Casting of Devitroceramic Fiber Reinforced Aluminum and its Mechanical Properties,” Bull. Jpn. Soc. Mech. Engrs., 26 (1983), pp. 1814–1819.

    Google Scholar 

  14. S. Nagata and K. Matsuda, “Effect of Some Factors on the Critical Preheating Temperature of Particles in Producing Metal-Particle Composites by Pressure Casting,” IMONO, Trans. Jpn. Foundrymen’s Soc., 53 (1981), pp. 300–304.

    CAS  Google Scholar 

  15. H. Fukunaga and K. Goda, “Fabrication of Fiber Reinforced Metal by Squeeze Casting (Pressurized Infiltration Process of Molten Aluminum to Continuous Glass Fiber Bundle),” Bull. Jpn. Soc. Mech. Engrs., 27 (1984), pp. 1245–1250.

    Google Scholar 

  16. H. Fukunaga and K. Goda, “Formation and Role of the Solidified Layer on a Fiber during the Fabrication of Fiber Reinforced Metal by the Liquid Process,” J. Jpn. Inst. Met., 49 (1985), pp. 78–83.

    CAS  Google Scholar 

  17. H. Fukunaga and K. Goda, “Composite Structure of Silicon Carbide Fiber Reinforced Metals,” Bull. JSME, 28 (1985), pp. 1–6.

    CAS  Google Scholar 

  18. T.W. Clyne et al., “The Use of ∂-alumina Fibre for Metal-Matrix Composites,” J. Mater. Sci., 10 (1985), pp. 85–96.

    Google Scholar 

  19. H. Kaufmann and A. Mortensen, “Wetting of Saffil™ Alumina Fiber Preforms by Aluminum at 973 K,” Metall. Trans., 23A (1992), pp. 2071–2073.

    CAS  Google Scholar 

  20. V.J. Michaud and A. Mortensen, “Infiltration of Fiber Preforms by a Binary Alloy. Part II: Further Theory and Experiments,” Metall. Trans., 23A (1992), pp. 2263–2280.

    CAS  Google Scholar 

  21. A. Mortensen and J.A. Cornie, “On the Infiltration of Metal Matrix Composites,” Metall. Trans., 18A (1987), pp. 1160–1163.

    CAS  Google Scholar 

  22. A. Mortensen et al., “Infiltration of Fibrous Preforms by a Pure Metal: Part I. Theory,” Metall. Trans., 20A (1989), pp. 2535–2547.

    CAS  Google Scholar 

  23. A. Mortensen and V. Michaud, “Infiltration of Fiber Preforms by a Binary Alloy: Part I. Theory,” Metall. Trans., 21A (1990), pp. 205–2072.

    Google Scholar 

  24. A. Mortensen, “Corrigenda and Comments on the Infiltration of Fiber Preforms,” Metall. Trans., 21A (1990), p. 2287.

    CAS  Google Scholar 

  25. A. Mortensen and T. Wong, “Infiltration of Fibrous Preforms by a Pure Metal: Part III. Capillary Phenomena,” Metall. Trans., 21A (1990), pp. 2257–2263.

    CAS  Google Scholar 

  26. L.J. Masur et al., “Infiltration of Fibrous Preforms by a Pure Metal: Part II. Experiment,” Metall. Trans., 20A (1989), pp. 2549–2557.

    CAS  Google Scholar 

  27. P. Jarry et al., “Infiltration of Fiber Preforms by an Alloy Part III: Die Casting Experiments,” Metall. Trans., 23A (1992), pp. 2281–2289.

    CAS  Google Scholar 

  28. J.L. Sommer, “Infiltration of Deformable Porous Media” (Ph.D. thesis, MIT, 1992).

    Google Scholar 

  29. A. Mortensen, “Interfacial Phenomena in the Solidification Processing of Metal Matrix Composites,” Mater. Sci. & Eng., A135 (1991), pp. I–II.

    Google Scholar 

  30. R.M. Andrews and A. Mortensen, “Lorentz Force Infiltration of Fibrous Preforms,” Metall. Trans., 22A (1991), pp. 2903–2915.

    CAS  Google Scholar 

  31. R.B. Calhoun and A Mortensen, “Infiltration of Fiber Preforms by a Pure Metal Part IV: Morphological Stability of the Remelting Front Separating Fully Liquid from Semisolid Infiltrant,” Metall. Trans., 23A (1992), pp. 2291–2299.

    CAS  Google Scholar 

  32. C.N. Cochran and R.C. Ray, “Production of Reinforced Composites,” U.S. patent 3,547,180 (1970).

    Google Scholar 

  33. S.-I. Towata, H. Ikuno, and S.-I. Yamada, “Carbon Fiber and Whisker Reinforced Alumninum Alloys by a Squeeze Casting Process” Sixth International Conference on Composite Materials, ICCM 6, ed. F.L. Matthews et al. (London: Elsevier, 1987), pp. 2.412–2.421.

    Google Scholar 

  34. S.-I. Yamada, S.-I. Towata, and H. Ikuno, “Mechanical Properties of Aluminum Alloys Reinforced with Continuous Fibers and Dispersoids” Advances in Cast Reinforced Metal Composites, ed. S.G. Fishman and A.K. Dhingra (Materials Park, OH: ASM, 1988), pp. 109–114.

    Google Scholar 

  35. H. Ikuno, S.-I. Towata, and S.-I. Yamada, “Thermal Cycling Behavior of Carbon Fiber-Reinforced Al Alloy with SiC Particulates and Whiskers,” J. Jpn. Inst. Met., 53 (1989), pp. 327–332.

    CAS  Google Scholar 

  36. S.-I. Towata, S.-I. Yamada, and T. Ohwaki, “Strength and Interfacial Reaction of High Modulus Carbon Fiber-Reinforced Aluminum Alloys,” Trans. Jpn. Inst. Met., 26 (1985), pp. 563–570.

    CAS  Google Scholar 

  37. S.-I. Towata and S.-I. Yamada, “Mechanical Properties of Aluminum Alloy Composites with Hybrid Reinforcements of Continuous Fiber and Whisker or Particulate” Composites’ 86: Recent Admnces in lapan and the United States, CCM-III, ed. K. Kawata, S. Umekawa, and A. Kobayashi (Tokyo: Jpn. Soc. Compo Mater., 1986), pp. 497–503.

    Google Scholar 

  38. S.-I. Towata, H. Ikuno, and S.-I. Yamada, “Mechanical Properties of Silicon-Carbide Fiber-Reinforced Aluminum Alloys with Whiskers or Particulates,” J. Jpn. Inst. Met., 51 (1987), pp. 248–255.

    CAS  Google Scholar 

  39. C.M. Friend, I. Horsfall, and C.L. Burrows, “The Effect of Particulate: Fibre Ratio on the Properties of Short-Fibre/Particulate Hybrid MMC Produced by Preform Infiltration,” J. Mater. Sci., 26 (1991), pp. 225–231.

    CAS  Google Scholar 

  40. T. Itoh, H. Hirai, and R-I. Isomura, “Aluminum Alloy Matrix Composites with Discontinuous Fibers Oriented UniaxiaDy by Electrostatic Method,” J. Jpn Inst. Light Metals, 38 (1988), pp. 620–625.

    CAS  Google Scholar 

  41. S.-I. Masuda and T. Itoh, “Electrostatic Means for Fabrication of Fiber-Reinforced Metals,” IEEE Trans. Ind. Applic., 25 (1989), pp. 1989.

    Google Scholar 

  42. Battelle Advanced Materials, “Reticulated-Foam Composite Castings” (Columbus, OH: Battelle, 1990).

    Google Scholar 

  43. T. Fitzgerald and A. Mortensen, work in progress, MIT (1992).

  44. W.E. Curwell and A.J. Shaler, “Method of Forming a Composite by Infiltrating a Porous Prefonn,” U.S. patent 4,033,400 (1977).

    Google Scholar 

  45. F.F. Lange, B.V. Velamakanni,and A.G. Evans, “Method for Processing Metal Reinforced Ceramic Composites” (Paper no. 39-8-88P presented at the 41st Pacific Coast Regional Meeting of the American Ceramic Society, San Francisco, CA, 1988).

    Google Scholar 

  46. D.R. Clarke, “Interpenetrating Phase Composites,” J. Am. Cer. Soc., 75 (1992), pp. 739–759.

    CAS  Google Scholar 

  47. L.J. Masur, “Infiltration of Fibrous Preforms by a Pure Metal” (Ph.D. thesis, MIT, 1988).

    Google Scholar 

  48. S. Nourbakhsh, F.L. Liang, and H. Margolin, “An Apparatus for Pressure Casting of Fibre-Reinforced High-Temperature Metal-Matrix Composites,” J. Phys. E: Scientific Instruments, 21 (1988), pp. 895–902.

    Google Scholar 

  49. J. Charbonnier and F. Goliard, “Method and Apparatus for Sand Moulding Composite Articles with a Die Made of Light Alloy and a Fibrous Insert,” U.S. patent 4,889,177 (1989).

    Google Scholar 

  50. M.W. Toaz, “Ceramic-Reinforced Metal Matrix Composites Fabricated by Squeeze Casting.” Advanced Composites, ed. M.W. Liddtke and W.H. Todd (Metals Park, OH: ASM, 1985), pp. 231–237.

    Google Scholar 

  51. M.A.H. Howes, “Ceramic-Reinforced Metal Matrix Composites Fabricated by Squeeze Casting,” Advanced Composites, ed. M.W. Liddtke and W.H. Todd (Metals Park, OH: ASM, 1985), pp. 223–230.

    Google Scholar 

  52. K.U. Kainer and B.L. Mordike, “Herstellung und Eigenschaften von Kurzfaserverstärkten Magnesium-Legierimgen,” Metall, 44 (1990), pp. 438–443.

    CAS  Google Scholar 

  53. S.K. Verma and J.L. Dorcie, “Manufacturing of Composites by Squeeze Casting” in Ref. 34, pp. 115–126.

    Google Scholar 

  54. H. Fukunaga, “Squeeze Casting Processes for Fiber Reinforced Metals and their Mechanical Properties,” in Ref. 34, pp. 101–107.

    Google Scholar 

  55. T.W. Oyne and J.F. Mason, “The Squeeze Infiltration Process for Fabrication of Metal-Matrix Composites,” Metall. Trans., 18A (1987), pp. 1519–1530.

    Google Scholar 

  56. K. Suganuma et al., “AA6061 Composite Reinforced with Potassium Titanate Whisker,” J. Mater. Sci. Lett., 8 (1989), pp. 808–810.

    CAS  Google Scholar 

  57. K. Suganuma et al., “Aluminium Composites Reinforced with a New Aluminium Borate Whisker,” J. Mater. Sci. Lett., 9 (1990), pp. 633–635.

    CAS  Google Scholar 

  58. S. Kohara and N. Muto, “Fabrication of SiC Whisker-Aluminum Composites,” Composites’ 86: Recent Advances in Japan and the United States, ed. K. Kawata, S. Umekawa, and A. Kobayashi (Tokyo: Jpn. Soc. Camp. Mater., 1986), pp. 491–496.

    Google Scholar 

  59. A.A. Das et al., “Solidification under Pressure: Aluminium and Zinc Alloys Containing Discontinuous SiC Fibre,” in Ref. Advances in Cast Reinforced Metal Composites, ed. S.G. Fishman and A.K. Dhingra (Materials Park, OH: ASM, 1988), pp. 139–147.

    Google Scholar 

  60. R.J. Sample, R.B. Bhagat, and M.F. Amateau, “High Pressure Squeeze Casting of Unidirectional Graphite Fiber Reinforced Aluminum Matrix Composites,” in Ref. 34, pp. 179–183.

    Google Scholar 

  61. R.J. Sample, R.B. Bhagat, and M.F. Amateau, “High Pressure Squeeze Casting of Unidirectional Graphite Fiber Reinforced Aluminum Matrix Composites,” J. Compo Mater., 23 (1989), pp. 1021–1028.

    CAS  Google Scholar 

  62. C.R. Cook, D.I. Yun, and W.H. Hunt, “System Optimization for Squeeze Cast Composites” in Ref. 34, pp. 195–204.

    Google Scholar 

  63. P. Jarry et al., “Influence of Matrix Solidification during Infiltration on the Structure of a Cast Fibre Reinforced Alloy,” F. Weinberg International Symposium on Solidification Processing, ed. J.E. Lait and I.V. Samarasekera (Hamilton, Canada: Pergamon Press, 1990), pp. 195–204.

    Google Scholar 

  64. F.A Girot et al., “On the Squeeze Casting Conditions of Aluminum Matrix Composite Materials,” J. Reinf. Plastics and Comp., 9 (1990), pp. 456–469.

    CAS  Google Scholar 

  65. J. Charbonnier et al., “High Performance Metal-Matrix Components Manufactured by Squeeze-Casting,” in Ref. 34, pp. 127–132.

    Google Scholar 

  66. M.F. Amateau and K.R. Karasek, “Graphite-Metal Matrix Bearings and Methods of Manufacturing,” U.S. patent 4,508,158 (1985).

    Google Scholar 

  67. K. Hashimoto, S. Sekiguchi, and K. Yamada, “Shear Properties of MMC by Torsion Tests,” Interfaces in Metal Ceramic Composites, ed. R. Y. Lin et al. (Warrendale, PA: TMS, 1989), pp. 551–557.

    Google Scholar 

  68. J.G. Banker, “,” SAMPE Quarterly, 5 (1974), pp. 39–46.

    CAS  Google Scholar 

  69. S.E. Booth, A.W. Clifford, and N.J. Parratt, “Casting Fibre Reinforced Metals,” U.K. patent GB 2,115,327 A (1983).

    Google Scholar 

  70. R. Asthana and P.K. Rohatgi, “Synthesis of SiC Platelet Reinforced 2014 Al Alloys by a Pressure Infiltration Technique,” J. Mater. Sci. Lett., 10 (1991), pp. 230–234.

    CAS  Google Scholar 

  71. J. Yang and D.D.L. Chung, “Casting Particulate and Fibrous Metal-Matrix Composites by Vacuum Infiltration of a Liquid Metal under an Inert Gas Pressure,” J. Mater. 5ci., 24 (1989), pp. 3605–3612.

    CAS  Google Scholar 

  72. J.-M. Chiou and D.D.L. Chung, “Characterization of Metal-Matrix Composites Fabricated by Vacuum Infiltration of a Uquid Metal under an Inert Gas Pressure,” Metal & Ceramic Matrix Composites: Processing, Modeling & Mechanical Behavior, ed. R.B. Shagat (Warrendale, PA: TMS, 1990), pp. 107–115.

    Google Scholar 

  73. J.-M. Chiou and D.D.L. Chung, “Cbaracterization of Metal Matrix Composites Fabricated by Vacuum Infiltration of a Liquid Metal under an Inert Cas Pressure,” J. Mater. Sci., 26 (1991), pp. 2583–2589.

    CAS  Google Scholar 

  74. S. Nourbakhsh, F.L. Liang, and H. Margolin, “Fabrication of a Ni3Al/Al2O3 Unidirectional Composite by Pressure Casting, Adv. Mater. and Proc., 3(1) (1988), pp. 57–78.

    Google Scholar 

  75. S. Nourbakhsh, H. Margolin, and F.L. Liang. “Microstructural Observations of Pressure Cast Ni3Al/AI2O3 and Ni/Al2O3 Composites,” Metall. Trans., 20A (1989), pp. 2159–2166.

    CAS  Google Scholar 

  76. S. Nouroakhsh and H. Margolin, “Fabrication of High Temperature Fiber Reinforced Intermetallic Matrix Composites,” Metal & Ceramic Matrix Composites: Processing, Modeling & Mechanical Behavior, ed. R.B. Bhagat (Warrendale, PA: TMS, 1990), pp. 75–89.

    Google Scholar 

  77. S. Nourbakhsh, H. Margolin, and F.L. Liang, “Fabrication of Continuous ZTA Fiber Reinforced Titanium Aluminide Intermetallic Composite Material by Pressure Casting,” Solidification of Metal Matrix CompoSites, ed. P.K. Rohatgi (Warrendale, PA: TMS, 1990), pp. 103–114.

    Google Scholar 

  78. J.T. Blucher, “Discussion of a Liquid Metal Pressure Infiltration Process to Produce Metal Matrix Composites,” J. Mater. Proc. Techn., 30 (1992), pp. 381–390.

    Google Scholar 

  79. L.J. Masur et al., “Pressure Casting of Fiber-Reinforced Metals,” Sixth International Conference on Composite Materials, ICCM 6, ed. F.L. Matthews (London: Elsevier, 1987), pp. 2.320–2.329.

    Google Scholar 

  80. A.J. Cook, “Method of Vacuum Casting,” U.S. patent 5,111,871 (1992).

    Google Scholar 

  81. A.J. Cook and P.S. Werner, “Pressure Infiltration Casting of Metal Matrix Composites,” Mater. Sci. & Eng., A144 (1991), pp. 189–206.

    CAS  Google Scholar 

  82. A. Mortensen, J.A. Cornie, and M.C. Flemings, “Columnar Dendritic Solidification in a Metal-Matrix Composite,” Metall. Trans., 19A (1988), pp. 709–721.

    CAS  Google Scholar 

  83. E. Klier, “Fabrication of Cast Particulate Reinforced Metals via Pressure Infiltration” (M.Sc. thesis, MIT, 1988).

    Google Scholar 

  84. E.M. Klier et al., “Fabrication of Cast Partide-Reinforced Metals via Pressure Infiltration,” J. Mater. Sci., 26 (1991), pp. 2519–2526.

    CAS  Google Scholar 

  85. E. Savrun and A. Grenni, “Liquid Infiltration of Metal Matrix Composites,” Innovations in Materials and Applialtion in the Transporation Industry ATA-MAT 89 (Turin, Italy: A.T.d.a.C.N.R., Torino Espozioni, C.so Massimo d’ Azeglio, 1989), pp. 601–611.

    Google Scholar 

  86. J.A. Isaacs et al., “Chemical Stability of Zirconia-Stabilized Alumina Fibers During Pressure Infiltration by Aluminum,” Metall. Trans., 22A (1991), pp. 2855–2862.

    CAS  Google Scholar 

  87. A.J. Cook, “Top Fill Casting.” U.S. patent 5,1 11,870(1992).

    Google Scholar 

  88. K. Atsushei, “Fibre Reinforced Metal Artide Manufactured by Placing Fibre Bundle in Mould, Pouring Molten Metal into Cavity, Pressing and Solidifying.” Japan patent 60-29433 (1985).

    Google Scholar 

  89. A.W. Clifford and W.J. Cook, “Production of Fibre Reinforced Metal Sections,” Eur. patent appl. 0,304,167 (1989).

    Google Scholar 

  90. Y. Tsunekawa et al., “Centrifugally Cast Aluminium Matrix Composites Containing Segregated Alumina Fibres,” J. Mater. Sci. Lett., 7 (1988), pp. 830–832.

    CAS  Google Scholar 

  91. R.M. Andrews and A. Mortensen, “Lorentz Force Driven Infiltration by Aluminum,”Mater. Sci. & Eng., A144 (1991), pp. 165–168.

    CAS  Google Scholar 

  92. H. Fukunaga, X. Wang. and Y. Aramaki, “Preparation of Intermetallic Compound Matrix Composites by Reaction Squeeze Casting,” J. Mater. Sci. Lett., 9 (1990), pp. 23–25.

    Google Scholar 

  93. D.C. Dun, J.L. Sommer, and A Mortensen, “Reactive Infiltration of Nickel Preforms with Molten Aluminum” (Paper presented at Materials Week, Chicago, IL, 1–5 Navember 1992).

    Google Scholar 

  94. A. Mortensen, “A Review of the Fracture Toughness of Partide Reinforced Aluminum Alloys,” Fabrication of Particulate Reinforced Metal Composites (Materials Park, OH: ASM, 1990), pp. 217–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortensen, A., Michaud, V.J. & Flemings, M.C. Pressure-infiltration processing of reinforced aluminum. JOM 45, 36–43 (1993). https://doi.org/10.1007/BF03223364

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03223364

Keywords

Navigation