Skip to main content
Log in

Localization of annexin V in rat normal kidney and experimental glomerulonephritis

  • Published:
Research In Experimental Medicine

Abstract

The localization of annexin V, a calcium binding protein, was immunochemically and immunohistologically studied in experimental rat glomerulonephritis using annexin V polyclonal antibody. Plasma and urinary annexin V levels were measured by a sandwich enzyme-linked immunosorbent assay (ELISA). Urinary annexin V level, which was correlated with urinary l-lactate dehydrogenase activity, N-acetyl-β-d-glucosaminidase activity and protein level, increased time-dependently after the injection of nephritogenic antigen (bovine glomerular basement membrane), progressively increasing to attain a peak level at 4 weeks of 51.5±11.3 ng/h. However, plasma annexin V level showed no increase during the study period. Normal kidneys showed strong staining for annexin V in distal tubules, being particularly strong in tubules of the inner stripe of the outer medulla, but could not be detected in proximal tubules. Annexin V was seen in visceral epithelial cells, Bowman’s capsule of the glomerulus, the vascular endothelium of arterioles and interlobular arteries, and vascular smooth muscle. In nephritis, the lumen of distal tubules and the luminal cell membrane were deeply stained, with leakage of annexin V being observed from tubular cells. In the present study, renal annexin V was markedly excreted into urine, and its urinary level reflected the severity of damage of renal tissue and the progression of nephritis. These changes of annexin V in the distal tubule and visceral epithelial cells may be of significance in cell injury of the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berendes R, Voges D, Demange P, Huber R, Burger A (1993) Structure-function analysis of the ion channel selectivity filter in human annexin V. Science 262: 427–430

    Article  PubMed  CAS  Google Scholar 

  2. Bomhard E, Maruhn D, Vogel O, Mager H (1990) Determination of urinary glutathione S-transferase and lactate dehydrogenase for differentiation between proximal and distal nephron damage. Arch Toxicol 64:269–278

    Article  PubMed  CAS  Google Scholar 

  3. Boustead CM, Walker JH (1991) Cellular Calcium. In: McCormack JG, Cobbold PH (eds) Annexins: calcium-dependent phospholipid-binding proteins. IRL Press, New York, pp 247–265

    Google Scholar 

  4. Bronner F (1989) Renal calcium transport: mechanisms and regulation — an overview. Am J Physiol 257:F707-F711

    PubMed  CAS  Google Scholar 

  5. Doubell AF, Lazure C, Charbonneau C, Thibault G (1993) Identification and immunolocalisation of annexins V and VI, the major cardiac annexins, in rat heart. Cardiovasc Res 27:1359–1367

    Article  PubMed  CAS  Google Scholar 

  6. Doucet A, Katz AI (1982) High-affinity Ca-Mg-ATPase along the rabbit nephron. Am J Physiol 242:F346-F352

    PubMed  CAS  Google Scholar 

  7. Giambanco I, Pula G, Ceccarelli P, Bianchi R, Donato R (1991) Immunohistochemical localization of annexin V (CaBP33) in rat organs. J Histochem Cytochem 39:1189–1198

    Article  PubMed  CAS  Google Scholar 

  8. Guder WG, Ross BD (1984) Enzyme distribution along the nephron. Kidney Int 26:101–111

    Article  PubMed  CAS  Google Scholar 

  9. Jans SWS, Willems J, van Bilsen M, Reutelingsperger CPM, van der Vusse GJ (1997) Phospholipid degradation in energy-deprived cardiac myocytes: does annexin V play a role? J Mol Cell Cardiol 29:1401–1410

    Article  PubMed  CAS  Google Scholar 

  10. Jung K, Schulze B-D, Sydow K (1987) Diagnostic significance of different urinary enzymes in patients suffering from chronic renal diseases. Clin Chim Acta 168: 287–295

    Article  PubMed  CAS  Google Scholar 

  11. Kaneko N, Matsuda R, Chiwaki F, Hosoda S (1994) Purification of cardiac annexin V from the beagle dog heart and changes in its localization in the ischemic rat heart. Heart Vessels 9:148–154

    Article  PubMed  CAS  Google Scholar 

  12. Kaneko N, Matsuda R, Hosoda S, Kajita T, Ohta Y (1996) Measurement of plasma annexin V by ELISA in the early detection of acute myocardial infarction. Clin Chim Acta 251:65–80

    Article  PubMed  CAS  Google Scholar 

  13. Kaneko N, Ago H, Matsuda R, Inagaki E, Miyano M (1997) Crystal structure of annexin V with its ligand K-201 as a calcium channel activity inhibitor. J Mol Biol 274:16–20

    Article  PubMed  CAS  Google Scholar 

  14. Kaneko N, Matsuda R, Toda M, Shimamoto K (1997) Inhibition of annexin V-dependent Ca2+ movement in large unilamellar vesicles by K201, a new 1,4-benzothiazepine derivative. Biochim Biophys Acta 1330:1–7

    Article  PubMed  CAS  Google Scholar 

  15. Le Hir M, Dubach UC, Schmidt U (1979) Quantitative distribution of lysosomal hydrolases in the rat nephron. Histochemistry 63:245–251

    Article  PubMed  Google Scholar 

  16. Liemann S, Benz J, Burger A, Voges D, Hofmann A, Huber R, Göttig P (1996) Structural and functional characterisation of the voltage sensor in the ion channel human annexin V. J Mol Biol 258:555–561

    Article  PubMed  CAS  Google Scholar 

  17. Luckcuck T, Trotter PJ, Walker JH (1997) Localization of annexin V in the adult and neonatal heart. Biochem Biophys Res Commun 238:622–628

    Article  PubMed  CAS  Google Scholar 

  18. Matsuda R, Kaneko N, Horikawa Y (1997) Presence and comparison of Ca2+ transport activity of annexins I, II, V and VI in large unilamellar vesicles. Biochem Biophys Res Commun 237:499–503

    Article  PubMed  CAS  Google Scholar 

  19. Moss SE (1992) The annexins: Portland Press Research. Monograph Series No 2, Portland Press, London

    Google Scholar 

  20. Murdoch CB, Baker PJ, DeLong E, Roe CR, Osofsky SG (1981) Urine and serum lactic dehydrogenase, lactic dehydrogenase isoenzymes, and alkaline phosphatase in the nephrotic syndrome. Kidney Int 19:710–715

    Article  Google Scholar 

  21. Nickeleit V, Zagachin L, Nishikawa K, Peters JH, Hynes RO, Colvin RB (1995) Embryonic fibronectin isoforms are synthesized in crescents in experimental autoimmune glomerulonephritis. Am J Pathol 147:965–978

    PubMed  CAS  Google Scholar 

  22. Nielsen VK, Kemp E, Laursen T (1968) Lactic dehydrogenase in kidney tissue and renal disease. Adaptive change of the synthesis in acute renal failure. Acta Med Scand 184:109–119

    Article  PubMed  CAS  Google Scholar 

  23. Nishikawa K, Andres G, Bhan AK, McCluskey RT, Collins AB, Stow JL, Stamenkovic I (1993) Hyaluronate is a component of crescents in rat autoimmune glomerulonephritis. Lab Invest 68:146–153

    PubMed  CAS  Google Scholar 

  24. Price RG (1992) The role of NAG (N-acetyl-β-D-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity. Clin Nephrol (Suppl 1) 38:S14-S19

    PubMed  Google Scholar 

  25. Price RG (1982) Urinary enzymes, nephrotoxicity and renal disease. Toxicology 23:99–134

    Article  PubMed  CAS  Google Scholar 

  26. Raynal P, Pollard HB (1994) Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta 1197:63–93

    PubMed  CAS  Google Scholar 

  27. Rennke HG (1994) How does glomerular epithelial cell injury contribute to progressive glomerular damage? Kidney Int Suppl 45:S58-S63

    Article  PubMed  CAS  Google Scholar 

  28. Riccardi D, Park JI, Lee W-S, Gamba G, Brown EM, Hebert SC (1995) Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc Natl Acad Sci USA 92:131–135

    Article  PubMed  CAS  Google Scholar 

  29. Sado Y, Okigaki T, Takamiya H, Seno S (1984) Experimental autoimmune glomerulonephritis with pulmonary hemorrhage in rats. The dose-effect relationship of the nephritogenic antigen from bovine glomerular basement membrane. J Clin Lab Immunol 15:199–204

    PubMed  CAS  Google Scholar 

  30. Salles J-P, Gayral-Taminh M, Fauvel J, Delobbe I, Mignon-Conté M, Conté JJ, Chap H (1993) Sustained effect of angiotensin II on tyrosine phosphorylation of annexin I in glomerular mesangial cells. J Biol Chem 268:12805–12811

    PubMed  CAS  Google Scholar 

  31. Spreca A, Rambotti MG, Giambanco I, Pula G, Bianchi R, Ceccarelli P, Donato R (1992) Immunocytochemical localization of annexin V (CaBP33), a Ca2+-dependent phospholipid- and membrane-binding protein, in the rat nervous system and skeletal muscles and in the porcine heart. J Cell Physiol 152:587–598

    Article  PubMed  CAS  Google Scholar 

  32. Wang L, Rahman MM, Iida H, Inai T, Kawabata S, Iwanaga S, Shibata Y (1995) Annexin V is localized in association with Z-line of rat cardiac myocytes. Cardiovasc Res 30:363–371

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuko Matsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, R., Kaneko, N., Horikawa, Y. et al. Localization of annexin V in rat normal kidney and experimental glomerulonephritis. Res Exp Med 200, 77–92 (2001). https://doi.org/10.1007/BF03220017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03220017

Keywords

Navigation