Skip to main content
Log in

Preparation and properties of crosslinkable waterborne polyurethanes containing aminoplast(I)

  • Communications
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A series of crosslinkable, waterborne polyurethanes (I-WBPUs) were prepared by in-situ polymerization using isophorone diisocyanate (IPDI)/poly(tetramethylene oxide) glycol (PTMG,M n =2,000)/ dimethylol propionic acid (DMPA)/ethylene diamine (EDA)/triethylamine (TEA)/aminoplast [hexakis(methoxymethyl)melamine (HMMM)] as a crosslinking agent. Typical crosslinkable, waterborne polyurethanes (B-WBPUs) blended from WBPU dispersion and aqueous HMMM solution was also prepared to compare with the I-WBPUs. The crosslinking reaction between WBPU and HMMM was verified using FTIR and XPS analysis. The effect of the HMMM contents on the dynamic mechanical thermal, thermal, mechanical, and adhesion properties of the I-WBPU and B-WBPU films were investigated. The storage modulus (E′), glass transition temperatures of the soft segment (T gs ) and the amorphous regions of higher order (T gh ), melting temperature (T m ), integral procedural decomposition temperature (IPDT), residual weight,T10% andT50% (the temperature where 10 and 50% weight loss occurred), tensile strength, initial modulus, hardness, and adhesive strength of both I-WBPU and B-WBPU systems increased with increasing HMMM content. However, these properties of the I-WBPU system were higher than those of the B-WBPU system at the same HMMM content. These results confirmed the in-situ polymerization used in this study to be a more effective method to improve the properties of the WBPU materials compared to the simple blending process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Dimitrievski and T. Malavasic,Prog. Org. Coat.,32, 51 (1995).

    Google Scholar 

  2. J. Koleske,ASTM Standardization News, October, 24 (1995).

    Google Scholar 

  3. U. Santer,J. Prog. Org. Coat.,12, 309 (1994).

    Article  Google Scholar 

  4. K. Mequanint and R. Sanderson,Polymer,43, 5341 (2002).

    Article  CAS  Google Scholar 

  5. S. H. Kang, D. C. Ku, J. H. Lim, Y. K. Yang, N. S. Kwak, and T. S. Hwang,Macromol. Res.,13, 212 (2005).

    Article  CAS  Google Scholar 

  6. K. Mequanint and R. Sanderson,Polymer,44, 2631 (2003).

    Article  CAS  Google Scholar 

  7. W. Morgans, inOutlines of Paint Technology, Halsted Press, New York, 1990, Chap. 11.

    Google Scholar 

  8. V. Mirgel and M. Sonntag,Eur. Coatings J.,10, 690 (1994).

    Google Scholar 

  9. D. Quan, E. C. Dickey, R. Andrews, and T. Rantell,Appl. Phys. Lett.,76, 2868 (2000).

    Article  Google Scholar 

  10. M. Jung and J. W. Cho,Journal of the Korean Fiber Society,41, 73 (2004).

    CAS  Google Scholar 

  11. Y. S. Kwak and H. D. Kim,Fibers and Polymers,3, 153 (2002).

    Article  CAS  Google Scholar 

  12. W. Otterbein and G. Pollano, Modern Paint and Coatings, March, 32 (1995).

  13. A. Marquez, J. Uribe, and T. Cruz,J. Appl. Polym. Sci.,66, 2221 (1997).

    Article  CAS  Google Scholar 

  14. B. Eling, inPolyurethane Technology & Applications, S. Lee, Ed., Huntsman International, Everberg, Belgium, 2002, Chap. 25, pp 379–383.

    Google Scholar 

  15. D. Hanquaer, Jr. (Textron Inc.), US Patent 4, 203, 883 (1998).

  16. H. Jotischky,Eur. Coatings J.,10, 696 (1995).

    Google Scholar 

  17. C. Schoff,ASTM Standardization News, October, 24 (1995).

    Google Scholar 

  18. T. Triplett,Industrial Paint and Powder,10, 28 (1995).

    Google Scholar 

  19. R. B. Orr and L. Chicsky, Jr. (Seton Co.), US Patent 4, 690, 953 (1987).

  20. F. A. Wickert (Glidden Co.), US Patent 5, 066, 705 (1991).

  21. Y. Tamaki and S. Ueda (Dainippon Ink & Chemicals), Jpn. Patent 5, 202, 162 (1993).

    Google Scholar 

  22. W. Thoma, K. Nachtkamp, W. Schroeer, and R. Langel (Bayer), Ger. Offen, DE 3313237 (1984).

  23. K. Matsuda, H. Ohmura, and T. Sakai (Kao Soap), Ger. Offen, DE 2632544 (1997).

  24. R. Kennedy,Eur. Coatings J.,10, 670 (1994).

    Google Scholar 

  25. H. V. Dijk, inWaterborne & Solvent Based Surface Coating Resins and Their Applications, SITA Technology Ltd, London, U. K., 1999, Vol. 2, pp 8–45.

    Google Scholar 

  26. R. Barrett, inWaterborne Coatings and Additives, D. Karsa and W. Davies, Eds., The Royal Society of Chemistry, Cambridge, UK, 1995, pp 85–104.

    Google Scholar 

  27. W. J. Blank and V. J. Tramontano,Prog. Org. Coat.,27, 11 (1996).

    Article  Google Scholar 

  28. D. J. David and H. B. Staley, “Analytical Chemistry of Polyurethanes”, High Polymer Series, Wiley-Interscience, New York, 1969, Vol. 16, Part 3.

    Google Scholar 

  29. W. Chen, K. C. Krisch, D. J. Kenney, and S. J. M. S. Wong,Polymer,29, 567 (1992).

    Google Scholar 

  30. Y. S. Kwak, E. Y. Kim, H. D. Kim, and J. B. Lee,Colloid. Polym. Sci.,283, 880 (2005).

    Article  CAS  Google Scholar 

  31. C. D. Doyle,Anal. Chem.,33, 77 (1961).

    Article  CAS  Google Scholar 

  32. H. Hiura, T. W. Ebbesen, K. Takagi, and H. Takahashi,Chem. Phys. Lett.,202, 509 (1993).

    Article  CAS  Google Scholar 

  33. S. Subramani, J. M. Lee, and J. H. Kim,Macromol. Res.,13, 418 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Do Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, J.Y., Kim, H.D. Preparation and properties of crosslinkable waterborne polyurethanes containing aminoplast(I). Macromol. Res. 14, 373–382 (2006). https://doi.org/10.1007/BF03219097

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03219097

Keywords

Navigation