Skip to main content
Log in

Correlation of biomarkers and histological responses in manufactured silver nanoparticle toxicity

  • Original Paper
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Today nanosciences are experiencing massive investment worldwide although research on toxicological aspect of these nano-sized particles has just begun and to date, no clear guidelines exist to quantify the effects. In the present study, we focus on silver nanoparticles, which represent one of the most widely investigated nanoparticles. The present data indicate that silver nanoparticles seem to cross the cellular membrane of various tissues in Sprague Dawley rat and, therefore, might have an influence on cell physiology and function. Rats are exposed via oral administration and intravenous injection with commercial silver nanoparticles. Three types of silver nanoparticels are used in this study: 1) Type I, particle size 50–90 nm with no dispersant, 2) Type II, particle size 1–10 nm dispersed with several amino acids. After 4 weeks exposure we examined the clinical indicators from blood and also analyzed histological changes in various tissues, including liver, kidney, and lung, to investigate the histopathological changes. The concentration of 2 indicators, total cholesterol and creatinine were changed with statistical importance. Also, lymphocytes/granulocyte ratio was significantly increased by silver nanoparticles. The histological change had accordance with the change of clinical indicators. The inflammatory symptoms were observed in liver tissue and it lead to the result that the hematologic/lymphocytic disorder, not hepatic disorder, would be related to silver nanoparticle toxicity. Finally we propose 4 genes as size independent genomic biomarkers and 10 genes as representative biomarkers for histopathological and clinical changes for silver nanoparticle exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rai, M., Yadav, A. & Gade, A. Silver nanoparticles as a new generation of antimicrobials.Biotechnol Adv 27, 76–83 (2009).

    Article  PubMed  CAS  Google Scholar 

  2. Böckmann, J., Lahl, H., Eckert, T. & Unterhalt, B. Titan-Blutspiegel vor und nach Belastungsversuchen mit Titandioxid.Pharmazie 55, 140–143 (2000).

    PubMed  Google Scholar 

  3. Maynard, A. D. inNanotechnology: A Research Strategy for Addressing Risk (Woodrow Wilson International Center for Scholars, Washington, DC., 2006).

    Google Scholar 

  4. Chen, X. & Schluesener, H. J. Nanosilver: A nanoproduct in medical application.Toxicol Lett 176, 1–12 (2008).

    Article  PubMed  CAS  Google Scholar 

  5. Braydich-Stolle, L., Hussain, S., Schlager, J. & Hofmann, M. C. In vitro cytotoxicity of nanoparticles in mammalian germ line stem cells.Toxicol Sci 88, 412–419 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. Ji, J. H.et al. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats.Inhal Toxicol 19, 857–871 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. Hussain, S.et al. In vitro toxicity of nanoparticles in BRL3A rat liver cells.Toxicol In vitro 19, 975–983 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. Kim, Y. S.et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats.Inhal Toxicol 20, 575–583 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. Oberdorster, G., Oberdorster, E. & Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles.Environ Heal Perspect 113, 823–939 (2005).

    Article  CAS  Google Scholar 

  10. Fielden, M. R.et al. A gene expression signature that predicts the future onset of drug-induced renal tubular toxicity.Toxicol Pathol 33, 675–683 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. Ganter, B.et al. Development of a large scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action.J Biotechnol 119, 219–244 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Don Haeng Lee or Joon Mee Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E., Maeng, JH., Lee, D.H. et al. Correlation of biomarkers and histological responses in manufactured silver nanoparticle toxicity. Toxicol. Environ. Health. Sci. 1, 8–16 (2009). https://doi.org/10.1007/BF03216458

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03216458

Keywords

Navigation