Skip to main content
Log in

Restriction fragment length polymorphism of mitochondrial DNA and phylogenetic relationships among five species of Indian freshwater turtles

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

DNA-based identification of species for phylogenetic analysis as well as forensic identification is widely being carried out with the help of polymerase chain reaction (PCR). In this study, a successful effort has been made to identify 5 species of Indian freshwater turtles, including 3 hard-shell turtles (Geoemydidae), i.e.Kachuga dhongoka, K. kachuga andGeoclemys hamiltoni, and 2 species of soft-shell turtles (Trionychidae), i.e.Aspideretes gangeticus andLissemys punctata punctata, by using a well-optimized PCR-RFLP method. The analysis of nucleotide sequence variations in the PCR-amplified mitochondrialcyt-b genes (encoding cytochromeb) from the 5 species revealed its usefulness in the taxonomic differentiation of these species. On the basis ofcyt-b sequence data and the PCR-RFLP pattern, a phylogeny was developed to resolve the genetic relationships between these species, living in the same habitat type. In comparison, the PCR-RFLP of mitochondrial 16S rDNA genes appeared less decisive in analysing phylogenetic relationships or even in species differentiation. Further, the molecular method (PCR-RFLP) developed here is simple, rapid, reliable and reproducible; hence it can be routinely applied for species identification, essential for conservation and management of endangered chelonian species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aranishi F, Okimoto T, Izumi S, 2005. Identification of gadoid species (Pisces, Gadidae) by PCR-RFLP analysis. J Appl Genet 46: 69–73.

    PubMed  Google Scholar 

  • Austin JD, Lougheed SC, Tanner K, Chek AA, Bogart JP, Boag PT, 2002. A molecular perspective on the evolutionary affinities of an enigmatic Neotropical frog,Allophryne ruthveni. Zool J Lin Soc 134: 335–346.

    Article  Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, et al. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Sys18: 489–522.

    Google Scholar 

  • Bowen BW, Nelson WS, Avise JC, 1993. A molecular phylogeny for marine turtles: trait mapping, rate assessment, and conservation relevance. Proc Nat Acad Sci 90: 4–7.

    Article  Google Scholar 

  • Caccone A, Amato G, Gratry OC, Behler J, Powell JR, 1999. A molecular phylogeny of four endangered Madagascar tortoises based on MtDNA sequences. Mol Phy Evol 12: 1–9.

    Article  CAS  Google Scholar 

  • Choudhury BC, Bhupathy S, Hanfee F, 2000. Status information on the tortoises and freshwater turtles of India. Proceedings of a Workshop on Conservation and Trade of Freshwater Turtles and Tortoises in Asia. In: Van Dijk PP, Stuart BL, Rhodin AGJ, eds. Asian Turtle Trade Chel Res Mono: 86–94.

  • Clarke SC, Magnussen, JE, Abercrombie DL, Mcallister MK, Shivji MS, 2006. Identification of shark species composition and proportion in the Hong Kong shark fin market based on molecular genetics and trade records. Conservation Biology 20: 201–211.

    Article  PubMed  Google Scholar 

  • Cordes JF, Armknecht SL, Starkey EA, Graves JH, 2001. Forensic identification of sixteen species of Chesapeake Bay sportfishes using mitochondrial Restriction Fragment Length Polymorphism (RFLP) analysis. Estuaries 24: 49–58.

    Article  Google Scholar 

  • Engstrom TN, Shaffer HB, McCord WP, 2004. Multiple data sets, high homoplasy, and the phylogeny of softshell turtles (Testudines: Trionychidae). Syst Biol 53: 693–710.

    Article  PubMed  Google Scholar 

  • Esposti MD, De-Vries S, Crimi M, Ghelli A, Patarnello T, Meyer A, 1993. Mitochondrial cytochromeb: evolution and structure of the protein. Bichem Biophys Acta 1143: 243–271.

    Article  CAS  Google Scholar 

  • Farrell LE, Roman J, Sunquist ME, 2000. Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol 9: 1583–1590.

    Article  CAS  PubMed  Google Scholar 

  • Gaur A, Reddy A, Annapoorni S, Satyarebala B, Shivaji S, 2006. The origin of Indian Star tortoises (Geochelone elegans) based on nuclear and mitochondrial DNA analysis: A story of rescue and repatriation. Conservation Genetics 7: 231–240.

    Article  CAS  Google Scholar 

  • Griffiths LR, Bellis C, Ashton KJ, Freney L, Blair B, 2003. A molecular genetic approach for forensic animal species identification. Forensic Sci Int 134: 99–108.

    Article  PubMed  Google Scholar 

  • Guha S, Kashyap VK, 2005. Development of novel heminested PCR assays based on mitochondrial 16s rRNA gene for identification of seven pecora species. BMC Genetics 6: 42.

    Article  PubMed  Google Scholar 

  • Hall TA, 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Series 41: 95–98.

    CAS  Google Scholar 

  • Hirayama R, 1984. Cladistic analysis of batagurine turtles (Batagurinae: Emydidae: Testudinoidea): a preliminary result. Stud Geol Salma 1: 141–157.

    Google Scholar 

  • Hsieh HM, Huang LH, Tsai LC, Liu CL, Kuo YC, Hsiao CT, et al. 2006. Species identification ofKachuga tecta using the cytochromeb gene. J Foren Sci 51: 52–54.

    Article  CAS  Google Scholar 

  • IUCN, 2006. Summary statistics for globally threatened species. IUCN Species Survival Commission, Gland, Switzerland.

    Google Scholar 

  • Jaccard P, 1908Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise Sci Nat 44: 223–270.

    Google Scholar 

  • Jerome M, Lemaire C, Bautista JM, Fleurence J, Ftienne M, 2003. Molecular phylogeny and species identification of sardines. J Agric Food Chem 51: 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Young JJ, Kang SJ, Chang SY, Huh K, Nam DH, 2001. Molecular discrimination of Cervidae antlers and Rangifer antlers. J Biochem Mol Biol 34: 114–117.

    CAS  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC, 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc Nat Acad Sci 86: 196–200.

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M, 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150–163.

    Article  CAS  PubMed  Google Scholar 

  • Lindstrom DP, 1999. Molecular species identification of newly hatched Hawaiian amphidromous gadoid larvae. Mar Biotech 1: 167–174.

    Article  CAS  Google Scholar 

  • Mattoccia M, Romano A, Sbordoni V, 2005. Mitochondrial DNA sequence analysis of the spectacled salamander,Salamandrina terdigitata (Urodela: Salamandridae), supports the existence of two distinct species. Zootaxa 995: 1–19.

    Google Scholar 

  • McDowell JR, Graves JE, 2002. Nuclear and mitochondrial DNA markers for specific identification of istiophorid and xiphiid billfishes. Fish Bull 100: 537–544.

    Google Scholar 

  • McDowell SB, 1964. Partition of the genusClemmys and related problems in the taxonomy of aquatic Testudinidae. Proc Zool Soc London 143: 239–279.

    Article  Google Scholar 

  • Meylan PA, 1987. The phylogenetic relationships of soft-shell turtles (family Trionychidae). Bulletin of American Museum of Natural History 186: 1–101.

    Google Scholar 

  • Miyaki CY, Pereira SL, Biasia I, Wajntal A, 1997. DNA fingerprinting applied to captive breeding programs of parrots. Ararajuba, Brazilian J Ornithol 5: 127–133.

    Google Scholar 

  • Mitchell SE, Cockburn AF, Seawright JA, 1993. The mitochondrial genome ofAnopheles quadrimaculatus species A: complete nucleotide sequence and organization. Genome. 36: 1058–1073.

    Article  CAS  PubMed  Google Scholar 

  • Moore MK, Bemiss JA, Rice SM, Quattro JM, Woodley CM, 2003. Use of restriction fragment length polymorphisms to identify sea turtle eggs and cooked meats to species. Conservation Genetics 4: 95–103.

    Article  Google Scholar 

  • Nei M, 1987. Molecular evolutionary genetics. Columbia University Press, New York.

    Google Scholar 

  • Palo JU, Merila J, 2003. A simple RFLP method for identification of two ranid frogs. Conservation Genetics 4: 801–803.

    Article  CAS  Google Scholar 

  • Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G, 1991. A simple fool’s guide to PCR. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu, HI.

    Google Scholar 

  • Parson W, Pegoraro K, Niederstätter H, Föger M, Steinlechner M, 2000 Species identification by means of the cytochromeb gene. Int J Leg Med 114 23–28.

    Article  CAS  Google Scholar 

  • Pfeiffer I, Burger J, Brenig B, 2004. Diagnostic polymorphism in mitochondrial cytochromeb gene allow discrimination between cattle, sheep, goat, roe buck and deer by PCR-RFLP. BMC Genetics 5: 30.

    Article  PubMed  Google Scholar 

  • Praschag P, Hundsdörfer AK, Reza AHMA, Fritz U, 2007a. Genetic evidence for wild-livingAspideretes nigricans and a molecular phylogeny of South Asian softshell turtles (Reptilia: Trionychidae:Aspideretes, Nilssonia) Zool Scr 36: 301–310.

    Article  Google Scholar 

  • Praschag P, Hundsdörfer AK, Fritz U, 2007b. Phylogeny and taxonomy of endangered South and South-East Asian freshwater turtles elucidated by mtDNA sequence variation (Testudines: Geoemydidae:Batagur, Callagur, Hardella, Kachuga, Pangshura). Zool Scr 36: 429–442.

    Article  Google Scholar 

  • Purcell M, Mackey G, LaHood E, 2004. Molecular methods for the genetic identification of salmonid prey from Pacific harbor seal (Phoca vitulina richardsi) scat. Fish Bull 102: 213–220.

    Google Scholar 

  • Rao RJ, 2006. Species diversity, habitat features and conservation of freshwater turtles in the Chambal river, Madhya Pradesh, India. Chelonii 4: 23–27.

    Google Scholar 

  • Rhodin AGJ, 2002. Conservation and trade of freshwater turtles and tortoises in Asia: review of status and threats using IUCN Red List and CITES criteria. CITES Technical Workshop on Trade in Freshwater Turtles and Tortoises in Asia. Kunming, China: 32–45.

    Google Scholar 

  • Rohilla MS, Rao RJ, Tiwari PK, 2006. Use of peripheral blood lymphocyte culture in the karyological analysis of Indian freshwater turtles,Lissemys punctata andGeoclemys hamiltoni. Curr Sci 90: 1130–1134.

    Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.

    Article  CAS  PubMed  Google Scholar 

  • Russell VJ, Hold GL, Pryde SE, Rehbein H, Quinteiro J, Rey-Mendez M, et al. 2000. Use of restriction fragment length polymorphism to distinguish between salmon species. J Agric Food Chem 48: 2184–2188.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW, 2001Molecular cloning: a laboratory manual, 3rd ed. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Schneider TD, Stephens RM, 1990 Sequence Logos: a new way to display consensus sequences. Nucleic Acids Res 18: 6097–6100.

    Article  CAS  PubMed  Google Scholar 

  • Spinks PQ, Shaffer HB, Iverson JB, McCord WP, 2004 Phylogenetic hypotheses for the turtle family Geoemydidae. Mol Phy Evol 32: 164–182.

    Article  CAS  Google Scholar 

  • Tajima F, 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 123: 585–595.

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  • Vences M, Thomas M, Meijden AVD, Chiari Y, Vieites DR, 2005. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Fron Zool 2: 5.

    Article  Google Scholar 

  • Whitfield JB, Cameron AS, 1998. Hierarchical analysis of variation in the mitochondrial 16S rRNA gene among Hymenoptera. Mol Bio Evol 15: 1728–1743.

    CAS  Google Scholar 

  • Zehner R, Zimmermann S, Mebs D, 1998. RFLP and sequence analysis of the cytochromeb gene of selected animals and man: methodology and forensic application. Int J Leg Med 111: 323–327.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod K. Tiwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohilla, M.S., Tiwari, P.K. Restriction fragment length polymorphism of mitochondrial DNA and phylogenetic relationships among five species of Indian freshwater turtles. J Appl Genet 49, 167–182 (2008). https://doi.org/10.1007/BF03195610

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195610

Keywords

Navigation