Skip to main content
Log in

Methods to predict transgressive segregation in barley and other self-pollinated crops

  • Review Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Most of agronomically important characters are biometric traits. An improvement of these traits in cultivated plants by deriving segregants superior to parents, which could be developed as cultivars, is a main goal in breeding of self-pollinated crops. Two problems need to be solved: when will the progeny be better than its parents and how can a genetic potential of a given pair of parental genotypes be predicted? In this paper, transgressive segregation in homozygous barley populations is shortly reviewed. Various approaches to choosing parental forms are shown, and a theoretical method for predicting the frequency of transgressive segregants in a homozygous population is presented. Additionally, relationships between parental diversity estimated with molecular markers and the progeny performance are discussed. Although the prediction of transgressive segregation is still a problem, it seems promising to apply an approach measuring the performance of the parental genotypes and estimating their genetic distance by molecular markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamski T, 1993. Wykorzystanie linii podwojonych haploidów w analizie statystyczno-genetycznej cech ilościowych [Application of doubled haploid lines for statistic-genetic analysis of quantitative traits]. Rozprawy i Monografie [Treatises and Monographs] No. 2, Institute of Plant Genetics PAS, Poznań: 62.

    Google Scholar 

  • Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A, 1995. Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP in barley (Hordeum vulgare L.). Theor Appl Genet 90: 294–302.

    Article  CAS  Google Scholar 

  • Barbacki S, Caliński T, Surma M, Kurhańska G, Adamski T, Kaczmarek Z, et al. 1978a. Transgressions in barley (Hordeum sativum Jess.). 7a. Transgressions of F6 and F7 hybrids Burea × Brown. Genet Pol 19: 403–421.

    Google Scholar 

  • Barbacki S, Caliński T, Surma M, Kurhańska G, Adamski T, Kaczmarek Z, et al. 1978b. Transgressions in barley (Hordeum sativum Jess.). 7b. Transgressions of F6 and F7 hybrids from the crosses Alasa × Burea, Impala × Himalaya, Lubuski × Lonhi, Lubuski × Brage Körn and Kazimierski × Brage Körn. Genet Pol 19: 423–436.

    Google Scholar 

  • Barbosa-Neto JF, Sorrels ME, Cisar G, 1996. Prediction of heterosis in wheat using coefficient of parentage and RFLP-based estimates of genetic relationship. Genome 39: 1142–1149.

    Article  CAS  PubMed  Google Scholar 

  • Bohn M, Utz HF, Melchinger AE, 1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci 39: 228–237.

    Article  CAS  Google Scholar 

  • Briggs KG, 1974. Study of combining ability for grain protein percentage in a diallel cross of five six-rowed barley cultivars. Can J Plant Sci 54: 605–609.

    Article  Google Scholar 

  • Burkhamer RL, Lanning SP, Martens RJ, Martin JM, Talbert LE, 1998. Predicting progeny variance form parental divergence in hard red spring wheat. Crop Sci 38: 243–248.

    Article  Google Scholar 

  • Caligari PDS, Powell W, Jinks JL, 1985. The use of doubled haploids in barley breeding. 2. The assessment of univariate cross prediction methods. Heredity 54: 353–358.

    Article  Google Scholar 

  • Chase SS, 1952. Production of homozygous diploids of maize from monoploids. Agron J 44: 263–267.

    Article  Google Scholar 

  • Choo TM, 1981. Doubled haploids for studying the inheritance of quantitative characters. Genetics 99: 525–540.

    CAS  PubMed  Google Scholar 

  • Choo TM, Kotecha A, Reinbergs E, Song LSP, Fejer SO, 1986. Diallel analysis of grain yield in barley using doubled haploid lines. Plant Breeding 97: 129–137.

    Article  Google Scholar 

  • Choo TM, Reinbergs E, 1979. Doubled haploids for estimating genetic variances in presence of linkage and gene association. Theor Appl Genet 55: 129–132.

    Article  Google Scholar 

  • Compton WA, 1968. Recurrent selection in self-pollinated crops without extensive crossing. Crop Sci 8: 773.

    Article  Google Scholar 

  • Corbellini M, Perenzin M, Accerbi M, Vaccino P, Borghi B, 2002. Genetic diversity in bread wheat, as revealed by coefficient of parentage and molecular markers, and its relationship to hybrid performance. Euphytica 123: 273–285.

    Article  CAS  Google Scholar 

  • Dobek A, Kaczmarek Z, Kiełczewska H, Łuczkiewicz T, 1977. Podstawy i założenia analizy statystycznej krzyżówek diallelicznych. I. Analiza wariancji [Principles and assumptions of statistic analysis of diallel crosses. I. Analysis of variance]. 7th Methodological Colloquium in Agro-Biometry. PAN, Warszawa: 332–353.

    Google Scholar 

  • Dobek A, Kaczmarek Z, Kiełczewska H, Łuczkiewicz T, 1978. Podstawy i założenia analizy statystycznej krzyżówek diallelicznych. II. Analiza genetyczna [Principles and assumptions of statistic analysis of diallel crosses. I. Genetic analysis]. 8th Methodological Colloquium in Agro-Biometry. PAN, Warszawa: 146–168.

    Google Scholar 

  • Fedak G, 1976. Evaluation of doubled haploids in barley. Z Pflanzenzüchtg 76: 147–151.

    Google Scholar 

  • Fejer SO, Fedak G, 1984. Yield and protein content in a diallel cross of Hiproly and other two-rowed barley cultivars. Cereal Res Commun 12: 209–213.

    Google Scholar 

  • Friedt W, Foroughi-Wehr B, 1983. Field performance of androgenetic doubled haploid spring barley form F1 hybrids. Z Pflanzenzüchtg 90: 177–184.

    Google Scholar 

  • Gallais A, 1993. Efficiency of recurrent selection methods to improve the line value of a population. Plant Breeding 111: 31–41.

    Article  Google Scholar 

  • Goldringer I, Brabant P, Gallais A, 1996. Theoretical comparison of recurrent selection methods for the improvement of self-pollinated crops. Crop Sci 36: 1171–1180.

    Article  Google Scholar 

  • Góral H, Tyrka M, Spiss L, 2005. Assessing genetic variation to predict the breeding value of winter triticale cultivars and lines. J Appl Genet 46: 125–131.

    PubMed  Google Scholar 

  • Grafius JE, 1959. A generalised treatment of the use of diallel crosses in quantitative inheritance. Heredity 10: 31–50

    Google Scholar 

  • Griffing B, 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9: 463–492.

    Google Scholar 

  • Hallauer AR, 1968. Selection and breeding methods. In: Frey KJ, ed. Plant breeding II. Iowa State University Press.

  • Hayes PM, Blake T, Chen THH, Tragoonrung S, Chen F, Pan A, Liu B, 1993. Quantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winterhardiness. Genome 36: 66–71.

    Article  CAS  PubMed  Google Scholar 

  • Hockett EA, Cook AF, Khan MA, Martin JM, Jones BL, 1993. Hybrid performance and combining ability for yield and malt quality in a diallel cross of barley. Crop Sci 33: 1239–1244.

    Article  Google Scholar 

  • Jinks JL, 1978. Unambiguous test for linkage of genes displaying nonallelic interactions for a metrical trait. Heredity 40: 171–173.

    Article  Google Scholar 

  • Jinks JL, Pooni HS, 1976. Predicting the properties of recombinant inbred lines derived by single seed descent. Heredity 36: 253–266.

    Article  Google Scholar 

  • Johnson LPV, Aksel R, 1959. Inheritance of yielding capacity in a fifteen-parental diallel cross of barley. Can J Genet Cytol 1: 208–265.

    Google Scholar 

  • Johnson LPV, Aksel R, 1964. The inheritance of malting quality and agronomic characters in a diallel cross of barley. Can J Genet Cytol 6: 178–200.

    Google Scholar 

  • Kaczmarek Z, Surma M, Adamski T, 1988. Epistatic effects in estimation of the number of genes on the basis of doubled haploid lines. Genet Pol 29: 253–259.

    Google Scholar 

  • Kaczmarek Z, Surma M, Adamski T, 1994. Theoretical bases for detection of linkage of genes between two quantitative characters in the presence of nonallelic interaction. Genet Pol 35: 53–62.

    Google Scholar 

  • Kasha KJ, Kao KN, 1970. High frequency haploid production in barley (Hordeum vulgare L.). Nature 225: 874–876.

    Article  CAS  PubMed  Google Scholar 

  • Kjær B, Haahr V, Jensen J, 1991. Associations between 23 quantitative traits and 10 genetic markers in barley cross. Plant Breeding 106: 261–274.

    Article  Google Scholar 

  • Kleinhofs A, Han F, 2002. Molecular mapping of the barley genome. In: Slafer GA, Molina-Cano JL, Savin R, Araus JL, Romagosa I, eds. Barley science: recent advances from molecular biology to agronomy of yield and quality. New York: Food Products Press: 31–63.

    Google Scholar 

  • Kuczyńska A, Surma M, Kaczmarek Z, Adamski T, 2007. Relationship between phenotypic and genetic diversity of parental genotypes and the frequency of transgression effects in barley (Hordeum vulgare L.). Plant Breeding (in print).

  • Martin JM, Blake TK, Hockett EA, 1991. Diversity among North American spring barley cultivars based on coefficients of parentage. Crop Sci 31: 1131–1137.

    Article  Google Scholar 

  • Martin JM, Talbert LE, Lanning SP, Blake NK, 1995. Hybrid performance in wheat as related to parental diversity. Crop Sci 35: 104–108.

    Article  Google Scholar 

  • Mather K, 1949. Biometrical Genetics. London: Methuen & Co.

    Google Scholar 

  • Mather K, Jinks JL, 1982. Biometrical Genetics (3rd edn.). London: Chapman and Hall.

    Google Scholar 

  • Melchinger AE, Lee M, Lamkey KR, Hallauer AR, Woodman WL, 1990. Genetic diversity for restriction fragment length polymorphisms and heterosis for two diallel sets of maize hybrids. Theor Appl Genet 80: 488–496.

    Article  Google Scholar 

  • Moser H, Lee M, 1994. RFLP variation and genealogical distance, multivariate distance, heterosis, and genetic variance in oats. Theor Appl Genet 87: 947–956.

    Article  CAS  Google Scholar 

  • Patel JD, Reinbergs E, Fejer SO, 1985. Recurrent selection in doubled-haploid populations of barley (Hordeum vulgare L.). Can J Genet Cytol 27: 172–177.

    Google Scholar 

  • Pickering RA, Devaux P, 1992. Haploid production: Approaches and use in plant breeding. In: Shewry PR, ed. Barley: genetics, biochemistry, molecular biology and biotechnology. Wallingford, CAB International: 519–547.

    Google Scholar 

  • Powell W, Thomas WTB, 1992. A comparison of the phenotypic distribution of single seed descent families and second cycle hybrids in barley. J Genet Breed 46: 91–98.

    Google Scholar 

  • Rieseberg LH, et al. 1999. Transgressive segregation, adaptation and speciation. Heredity 83: 363–372.

    Article  PubMed  Google Scholar 

  • Riggs TJ, Snape J, 1977. Effects of linkage and interaction in a comparison of theoretical populations derived by diploidized haploid and single seed descent methods. Theor Appl Genet 49: 111–115.

    Article  Google Scholar 

  • Rutger JN, Schaller CW, Dickson AD, Williams JC, 1966. Variation and covariation in agronomic and malting quality characters in barley. I. Heritability estimates. Crop Sci 6: 231–234.

    Article  Google Scholar 

  • Saghai Maroof MA, Yang GP, Zhang Q, Gravois KA, 1997. Correlation between molecular marker distance and hybrid performance in U.S. Southern long grain rice. Crop Sci 37: 145–150.

    Article  Google Scholar 

  • Shieh GJ, Thseng FS, 2002. Genetic diversity of Tainan-white maize inbred lines and prediction of single cross hybrid performance using RAPD markers. Euphytica 124: 307–313.

    Article  CAS  Google Scholar 

  • Snape JW, 1976. A theoretical comparison of diploidised haploid and single seed descent populations. Heredity 36: 275–277.

    Article  Google Scholar 

  • Snape JW, 1997. Application of doubled haploid lines in plant breeding and genetical research: current issues and approaches. In: Krajewski P, Kaczmarek Z, eds. Advances in biometrical genetics. Proceedings of the 10th Meeting of the Eucarpia Section Biometrics in Plant Breeding, 14–16 May 1997, Poznań, Poland: 35–46.

  • Song LPS, Park SJ, Reinbergs E, Choo TM, Kasha KJ, 1978. Doubled haploid vs bulk method for production ofhomozygous lines in barley. Z Pflanzenzüchtg 81: 271–280.

    Google Scholar 

  • Souza E, Sorrells ME, 1991. Prediction of progeny variation in oat from parental genetic relationships. Theor Appl Genet 82: 233–241.

    Article  Google Scholar 

  • Strahwald JF, Geiger HH, 1988. Theoretical studies on the usefulness of doubled haploids for improving the efficiency of recurrent selection in spring barley. Proceedings of the 7th Meeting of the EUCARPIA Section Biometrics in Plant Breeding, August 2–5, As, Norway.

  • Surma M, 1978. Diallel analysis of the number of spikes, number of spikelets per spike, 1000-kernel weight and protein content in spring barley (Hordeum vulgare L.). Genet Pol 19: 377–402.

    Google Scholar 

  • Surma M, 1996. Biometryczno-genetyczna analiza cech ilościowych mieszańców i linii podwojonych haploidów jęczmienia jarego [Biometric-genetic analysis of quantitative traits of hybrids and doubled haploid lines of spring barley]. Rozprawy i Monografie [Treatises and Monographs] No. 3, Institute of Plant Genetics PAS, Poznań: 110.

    Google Scholar 

  • Surma M, Adamski T, 1982. Diallel analysis of the yield structure components in spring barley (Hordeum vulgare L.). Genet Pol 23: 41–50.

    Google Scholar 

  • Surma M, Adamski T, Kaczmarek Z, 1991. Linkage of genes controlling quantitative characters in barley DH lines. Proceedings of the 8th Meeting of the EUCARPIA Section Biometrics in Plant Breeding, July 1–6, Brno: 367–373.

  • Surma M, Adamski T, Kaczmarek Z, Kapała A, 1998. Frequency of transgression and gene distribution in barley doubled haploid populations from first and second cycle hybrids. J Appl Genet 39: 237–247.

    Google Scholar 

  • Surma M, Kaczmarek Z, Adamski T, 2000. Predicted and observed frequencies of transgression effects in barley doubled haploids. (in Polish with English summary). Bulletin of Plant Breeding and Acclimatization Institute 216: 195–199.

    Google Scholar 

  • Surma M, Adamski T, Kaczmarek Z, Czajka S, 2006. Phenotypic distribution of barley SSD lines and doubled haploids derived from F1 and F2 hybrids. Euphytica 149: 19–25.

    Article  Google Scholar 

  • Thomas WTB, 1987. The use of random F3 families for cross prediction in spring barley. J Agric Sci 108: 431–436.

    Article  Google Scholar 

  • Thomas WTB, Powell W, Waugh R, Chalmers KJ, Baura UM, Jack P, et al. 1995. Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91: 1037–1047.

    Article  CAS  Google Scholar 

  • Tinker NA, Mather DE, Rossnagel BG, Kasha KJ, Kleinhofs A, Hayes PM, et al. 1996. Regions of the genome that affect agronomic performance in two-row barley. Crop Sci 36: 1053–1062.

    Article  Google Scholar 

  • Warzecha T, Adamski T, Surma M, Kaczmarek Z, 2000. Genetic variability of grain size in population of hulled and hulless barley doubled haploids (in Polish with English summary). Bulletin of Plant Breeding and Acclimatization Institute 216: 189–194.

    Google Scholar 

  • Xu W, Virmani SS, Hernandez JE, Sebastian LS, Redona ED, Li Z, 2002. Genetic diversity in the parental lines and heterosis of the tropical rice hybrids. Euphytica 127: 139–148.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anetta Kuczyńska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuczyńska, A., Surma, M. & Adamski, T. Methods to predict transgressive segregation in barley and other self-pollinated crops. J Appl Genet 48, 321–328 (2007). https://doi.org/10.1007/BF03195228

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195228

Keywords

Navigation